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1. Introduction
Tensors (hypermatrices) are extensions of matrices. The difference is that a ma-
trix entry aij has two indices i and j, while a tensor entry ai1···im has m indices
i1, · · · , im. In the recent decade, major progresses have been made on the re-
search of tensors. It is revealed that there are also profound theories on tensor
analysis, just as matrix analysis. Today I will review progresses on six areas
of Tensor Analysis, Computation and Applications. My review cannot be com-
plete.

A book on spectral theory of tensors (hypermatrices) and special tensors (hyper-
matrices) is:

[A] L. Qi and Z. Luo, Tensor Analysis: Spectral Properties and Special Tensors,
SIAM, Philadelphia, 2017.

http://math.suda.edu.cn
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1.1. A Book on Tensor (Hypermatrix) Analysis

OT151

For more information about SIAM books, journals, 
conferences, memberships, or activities, contact: 

Society for Industrial and Applied Mathematics  
3600 Market Street, 6th Floor 

Philadelphia, PA 19104-2688 USA 
+1-215-382-9800 • Fax +1-215-386-7999 

siam@siam.org • www.siam.org

OT151
9781611974744

90000
ISBN 978-1-611974-74-4

TEN
SOR AN

ALYSIS
Spectral Theory and Special Tensors

Liqun Qi • Ziyan Luo

LIQUN QI • ZIYAN LUO

TENSOR ANALYSIS
Spectral Theory and  

Special Tensors

OT151_Qi-Luo_coverG-white-12-16-16.indd   1 12/19/2016   8:59:11 AM
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1.2. Symmetric Tensors

Denote [n] := {1, · · · , n}. An mth order n-dimensional real tensor (hyperma-
trix) A = (ai1···im) is a multi-array of real numbers ai1···im, where ij ∈ [n] for
j ∈ [m]. Denote the set of all mth order n-dimensional real tensors as Tm,n.

For an mth order n-dimensional tensor A = (ai1···im), if its entries ai1···im are
invariant under any permutation of its indices, then A is called a symmetric
tensor. Denote the set of all mth order n-dimensional real symmetric tensors as
Sm,n. Symmetric tensors arise from many applications.

Define the general Kronecker symbol as

δi1···im =

{
1, if i1 = · · · = im,

0, otherwise.

Then ai1···im is called a diagonal entry if δi1···im = 1, and an off-diagonal entry
otherwise. The tensor with entries δi1···im is called the identity tensor in Tm,n,
denoted by Im,n, or simply I if its order and dimension are clear by the context.

For A = (ai1···im) ∈ Tm,n, for i ∈ [n], define

∆i :=
∑
{|aii2···im| : ij ∈ [n] for j = 2, · · · ,m, δii2···im = 0}.

http://math.suda.edu.cn
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1.3. Examples of Symmetric Tensors

Example 1: Higher-order derivatives of sufficiently differentiable multi-
variable functions. Let f : <n → < have continuous mth order derivatives.
Then its mth order derivatives ∇(m)f(x) at any x ∈ <n is an mth order n-
dimensional real symmetric tensor.

Example 2: Coefficient tensors of multi-variate homogeneous polynomial
forms. Let

f(x) =
n∑

i1,··· ,im=1

ai1···imxi1 · · · xim

be a multi-variate homogeneous polynomial form. Then its coefficient tensor
A = (ai1···im) is a symmetric tensor.

Example 3: Moment and cumulant tensors in signal processing. Let x
be a random vector of dimension n, with components xi. Then one defines
its moment and cumulant tensors of order m as: M(x) = (µii···im) with
µi1···im = E{xi1 · · · xim}, and C(x) = (ci1···im) with ci1···im = Cum{xi1 · · · xim}.
The cumulants of order 1 and 2 are better known under the names of statistical
mean and covariance. Moment and cumulant tensors are symmetric tensors.

http://math.suda.edu.cn
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1.4. Examples 4: Higher Order Diffusion Tensors

Diffusion magnetic resonance imaging (D-MRI) has been developed in biomed-
ical engineering for decades. It measures the apparent diffusivity of water
molecules in human or animal tissues, such as brain and blood, to acquire bi-
ological and clinical information. In tissues, such as brain gray matter, where
the measured apparent diffusivity is largely independent of the orientation of the
tissue (i.e., isotropic), it is usually sufficient to characterize the diffusion char-
acteristics with a single (scalar) apparent diffusion coefficient (ADC). However,
in anisotropic media, such as skeletal and cardiac muscle and in white matter,
where the measured diffusivity is known to depend upon the orientation of the
tissue, no single ADC can characterize the orientation-dependent water mobility
in these tissues. Because of this, a diffusion tensor model was proposed years
ago to replace the diffusion scalar model. This resulted in Diffusion Tensor
Imaging (DTI).

However, DTI is known to have a limited capability in resolving multiple fibre
orientations within one voxel. This is mainly because the probability density
function for random spin displacement is non-Gaussian in the confining en-
vironment of biological tissues and, thus, the modeling of self-diffusion by a
second order tensor breaks down. Hence, researchers presented various Higher
Order Diffusion Tensor Imaging models to overcome this problem. A higher
order diffusion tensor is a higher order symmetric tensor.

http://math.suda.edu.cn
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1.5. Example 5: Adjacency and Laplacian Tensors

A uniform hypergraph is also called a k-graph. Let G = (V,E) be a k-graph,
where V = {1, 2, · · · , n} is the vertex set, E = {e1, e2, · · · , em} is the edge
set, ep ⊂ V and |ep| = k for p = 1, · · · ,m, and k ≥ 2. If k = 2, then G is an
ordinary graph. We assume that ep 6= eq if p 6= q.

The adjacency tensorA = A(G) ofG, is a kth order n-dimensional symmetric
tensor, with A = (ai1i2···ik), where ai1i2···ik = 1

(k−1)! if (i1, i2, · · · , ik) ∈ E, and 0

otherwise. Thus, ai1i2···ik = 0 if two of its indices are the same.

For i ∈ V , its degree d(i) is defined as d(i) = |{ep : i ∈ ep ∈ E}|. We assume
that every vertex has at least one edge. Thus, d(i) > 0 for all i. The degree
tensor D = D(G) of G, is a kth order n-dimensional diagonal tensor, with its
ith diagonal element as d(i).

The Laplacian tensor L of G is defined by D − A. The signless Laplacian
tensor Q of G is defined by D +A.

Adjacency tensors, degree tensors, Laplacian tensors and signless Laplacian ten-
sors are real symmetric tensors.

http://math.suda.edu.cn
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1.6. Tensor Products

We use • to denote tensor inner product (full contraction). Let A =
(ai1···im),B = (bi1···im) ∈ Tm,n. Then

A • B =
n∑

i1,··· ,im=1

ai1···imbi1···im.

√
A • A is called the Frobenius norm of A, denoted as ‖A‖F .

We use ⊗ to denote tensor outer product. Let A = (ai1···im) ∈ Tm,n and B =
(bi1···ip) ∈ Tp,n. Then A⊗ B =

(
ai1···imbim+1···im+p

)
∈ Tm+p,n.

Let x ∈ <n and α ∈ <. Denote αxm ≡ αx⊗m ≡ αx⊗ · · · ⊗ x︸ ︷︷ ︸
m

. Then αxm ∈

Sm,n. We call it a symmetric rank-one tensor. In particular, we call xm a pure
symmetric rank-one tensor.

We will use small letters x, y, a, b, · · · , for scalers, small bold letters x,y, · · · ,
for vectors, capital letters A,B,C, · · · , for matrices, calligraphic letters
A,B, C, · · · , for tensors. We use 0 to denote the zero vector in <n. Let
A = (ai1···im) ∈ Tm,n, we denote |A| = (|ai1···im|).

http://math.suda.edu.cn
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1.7. Positive Definite and Semi-Definite Tensors

An n-dimensional homogeneous polynomial form of degree m, f(x), where
x ∈ <n, is equivalent to the tensor product of an n-dimensional tensor A =
(ai1···im) of order m, and the pure symmetric rank-one tensor xm:

f(x) ≡ Axm ≡ A • xm :=
n∑

i1,··· ,im=1

ai1···imxi1 · · · xim.

The tensor A is called positive semi-definite (PSD) if f(x) ≥ 0 for all x ∈ <n;
and positive definite (PD) if f(x) > 0 for all x ∈ <n,x 6= 0. Clearly, when m
is odd, there is no nontrivial positive semi-definite tensor.

When m is even, the positive (semi-)definiteness of such a tensor A or such a
homogeneous polynomial form f(x) plays an important role in polynomial the-
ory, automatic control, stochastic process, magnetic resonance imaging, spectral
hypergraph theory, etc.

http://math.suda.edu.cn
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2. Eigenvalues and Eigenvectors
An n-dimensional homogeneous polynomial form of degree m, f(x), where
x ∈ <n, is equivalent to the tensor product of a symmetric n-dimensional tensor
A = (ai1···im) of order m, and the rank-one tensor xm:

f(x) ≡ Axm :=
n∑

i1,··· ,im=1

ai1···imxi1 · · · xim.

The tensor A is called symmetric as its entries ai1···im are invariant under any
permutation of their indices. The tensor A is called positive definite (semidefi-
nite) if f(x) > 0 (f(x) ≥ 0) for all x ∈ <n, x 6= 0. Whenm is even, the positive
definiteness of such a homogeneous polynomial form f(x) plays an important
role in the stability study of nonlinear autonomous systems via Liapunov’s di-
rect method in Automatic Control. For n ≥ 3 and m ≥ 4, this issue is a hard
problem in mathematics.

http://math.suda.edu.cn
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2.1. Eigenvalues of Tensors

[1]. L. Qi, “Eigenvalues of a real supersymmetric tensor”, Journal of Symbolic
Computation 40 (2005) 1302-1324,

defined eigenvalues and eigenvectors of a real symmetric tensor, and explored
their practical applications in determining positive definiteness of an even de-
gree multivariate form.
By the tensor product,Axm−1 for a vector x ∈ <n denotes a vector in<n, whose
ith component is

(
Axm−1

)
i
≡

n∑
i2,··· ,im=1

aii2···imxi2 · · · xim.

http://math.suda.edu.cn
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We call a number λ ∈ C an eigenvalue of A if it and a nonzero vector x ∈ Cn

are solutions of the following homogeneous polynomial equation:(
Axm−1

)
i

= λxm−1
i , ∀ i = 1, · · · , n. (1)

and call the solution x an eigenvector of A associated with the eigenvalue λ.
We call an eigenvalue of A an H-eigenvalue of A if it has a real eigenvector x.
An eigenvalue which is not an H-eigenvalue is called an N-eigenvalue. A real
eigenvector associated with an H-eigenvalue is called an H-eigenvector.

The resultant of (1) is a one-dimensional polynomial of λ. We call it the char-
acteristic polynomial of A.

http://math.suda.edu.cn
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2.2. Theorem on Eigenvalues

Theorem 2.1 (Qi 2005)
We have the following conclusions on eigenvalues of an mth order n-
dimensional symmetric tensor A:
(a). A number λ ∈ C is an eigenvalue of A if and only if it is a root of the
characteristic polynomial φ.
(b). The number of eigenvalues ofA is d = n(m−1)n−1. Their product is equal
to det(A), the resultant of Axm−1 = 0.
(c). The sum of all the eigenvalues of A is

(m− 1)n−1tr(A),

where tr(A) denotes the sum of the diagonal elements of A.
(d). If m is even, then A always has H-eigenvalues. A is positive definite
(positive semidefinite) if and only if all of its H-eigenvalues are positive (non-
negative).
(e). The eigenvalues of A lie in the following n disks:

|λ−ai,i,··· ,i| ≤
∑
{|ai,i2,··· ,im| : i2, · · · , im = 1, · · · , n, {i2, · · · , im} 6= {i, · · · , i}},

for i = 1, · · · , n.

http://math.suda.edu.cn
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2.3. E-Eigenvalues

In the same paper, I defined another kind of eigenvalues for tensors. Their struc-
ture is different from the structure described by Theorem 2.1. Their characteris-
tic polynomial has a lower degree.

Suppose that A is an mth order n-dimensional symmetric tensor. We say a
complex number λ is an E-eigenvalue of A if there exists a complex vector x
such that {

Axm−1 = λx,

xTx = 1.
(2)

In this case, we say that x is an E-eigenvector of the tensor A associated with
the E-eigenvalue λ. If an E-eigenvalue has a real E-eigenvector, then we call it
a Z-eigenvalue and call the real E-eigenvector a Z-eigenvector.

http://math.suda.edu.cn
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2.4. The E-Characteristic Polynomial and Orthogonal Similarity

When m is even, the resultant of

Axm−1 − λ(xTx)
m−2
2 x = 0

is a one dimensional polynomial of λ and is called the E-characteristic poly-
nomial of A. We say that A is regular if the following system has no nonzero
complex solutions: {

Axm−1 = 0,

xTx = 0.

Let P = (pij) be an n× n real matrix. Define B = PmA as another mth order
n-dimensional tensor with entries

bi1,i2,··· ,im =
n∑

j1,j2,··· ,jm=1

pi1j1pi2j2 · · · pimjmaj1,j2,··· ,jm.

If P is an orthogonal matrix, then we say thatA andB are orthogonally similar.

http://math.suda.edu.cn
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2.5. Theorem on E-eigenvalues

Theorem 2.2 (Qi 2005)
We have the following conclusions on E-eigenvalues of an mth order n-
dimensional symmetric tensor A:
(a). WhenA is regular, a complex number is an E-eigenvalue ofA if and only if
it is a root of its E-characteristic polynomial.
(b). Z-eigenvalues always exist. An even order symmetric tensor is positive
definite if and only if all of its Z-eigenvalues are positive.
(c). If A and B are orthogonally similar, then they have the same E-eigenvalues
and Z-eigenvalues.
(d). If λ is the Z-eigenvalue of A with the largest absolute value and x is a
Z-eigenvector associated with it, then λxm is the best rank-one approximation
of A, i.e.,

‖A−λxm‖F =
√
‖A‖2

F − λ2 = min{‖A−αum‖F : α ∈ <, u ∈ <n, ‖u‖2 = 1},

where ‖ · ‖F is the Frobenius norm.

http://math.suda.edu.cn
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2.6. Invariants of Tensors

Tensors are practical physical quantities in relativity theory, fluid dynamics,
solid mechanics and electromagnetism, etc. The concept of tensors was in-
troduced by Gauss, Riemann and Christoffel, etc., in the 19th century in the
study of differential geometry. In the very beginning of the 20th century, Ricci,
Levi-Civita, etc., further developed tensor analysis as a mathematical discipline.
But it was Einstein who applied tensor analysis in his study of general relativ-
ity in 1916. This made tensor analysis an important tool in theoretical physics,
continuum mechanics and many other areas of science and engineering. The
tensors in theoretical physics and continuum mechanics are physical quantities
which are invariant under co-ordinate system changes. A scalar associated with
a tensor is an invariant of that tensor, if it does not change under co-ordinate
system changes. Theorem 2.2 (c) implies that E-eigenvalues and Z-eigenvalues
are invariants of the tensor. Later research demonstrate that these eigenvalues,
in particular Z-eigenvalues, have practical uses in physics and mechanics.

[2]. L. Qi, “Eigenvalues and invariants of tensors”, Journal of Mathematical
Analysis and Applications 325 (2007) 1363-1377,

also elaborated this. When m is odd, the E-characteristic polynomial was de-
fined in [2] as the resultant of{

Axm−1 − λxm−2
0 x,

x>x− x2
0.

http://math.suda.edu.cn
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2.7. The Best Rank-One Approximation

Theorem 2.2 (d) indicates that Z-eigenvalues play an important role in the best
rank-one approximation. This also implies that Z-eigenvalues are significant in
practice. The best rank-one approximation of higher order tensors has extensive
engineering and statistical applications, such as Statistical Data Analysis. The
following are some papers on this topic:

[3]. L. De Lathauwer, B. De Moor and J. Vandwalle, “On the best rank-1 and
rank-(R1, R2, · · · , Rn) approximation of higher order tensors”, SIAM J. Matrix
Anal. Appl, 21 (2000) 1324-1342.

[4]. E. Kofidies and Ph.A. Regalia, “On the best rank-1 approximation of higher
order supersymmetric tensors”, SIAM J. Matrix Anal. Appl, 23 (2002) 863-884.

[5]. T. Zhang and G.H. Golub, “Rank-1 approximation to higher order tensors”,
SIAM J. Matrix Anal. Appl, 23 (2001) 534-550.

http://math.suda.edu.cn
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2.8. The Gelfand Formula

A survey papers on eigenvalues of nonnegative tensors is:

[6]. K.C. Chang, L. Qi and T. Zhang, “A survey on the spectral theory of nonneg-
ative tensors”, Numerical Linear Algebra with Applications 20 (2013) 891-912.
In that paper the description on the Gelfand formula is as follows: “A 2-order
n-dimensional real tensor A is the n × n real matrix A = (aij). It can also be
viewed as a linear endomorphism on <n, hence the eigenvalue problem for A is
a linear problem. In particular, the spectral radius r(A) of A is defined to be

r(A) = max{|λ| |λ is an eigenvalue ofA}.

According to Gelfand’s formula, r(A) = lim
k→∞
||Ak||

1
k , where || · || denotes the

operator norm. Thus, r(A) is an intrinsic property of A as it is entirely deter-
mined by A itself.”

Is Gelfand’s formula still valid for a higher order tensor?

http://math.suda.edu.cn
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2.9. The Gelfand Formula

This question is answered recently in the following paper:

[7]. Y. Song and L. Qi, “Spectral properties of positively homogeneous oper-
ators induced by higher order tensors”, SIAM Journal on Matrix Analysis and
Applications 34 (2013) 1581-1595.

Abstract: The Fredholm alternative type results are proved for eigenvalues
(E-eigenvalues, H-eigenvalues, Z-eigenvalues) of a higher order tensor A. For
the positively homogeneous operators FA and TA induced by a higher order
tensor A, we show some relationship between the Gelfand formula and the
spectral radius, and present the upper bound of their spectral radii. Furthermore,
for a nonnegative tensor A, we obtain the practical relevance for the spectral
radius of the operators FA and TA as well as the operator norms of FA and TA.

http://math.suda.edu.cn
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2.10. Lek-Heng Lim’s work

Independently, at Stanford University in 2005, Gene Golub’s then Ph.D. student
Lek-Heng Lim also defined eigenvalues for tensors in his paper:

[8]. L-H. Lim, “Singular values and eigenvalues of tensors: A variational ap-
proach”, Proceedings of the 1st IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 13-15,
2005, pp. 129-132.

Lim (2005) defined eigenvalues for general real tensors in the real field. The l2

eigenvalues of tensors defined by Lim (2005) are Z-eigenvalues of Qi (2005),
while the lk eigenvalues of tensors defined by Lim (2005) are H-eigenvalues
in Qi (2005) in the even order case. Notably, Lim (2005) proposed a multilin-
ear generalization of the Perron-Frobenius theorem based upon the notion of lk

eigenvalues (H-eigenvalues) of tensors.
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2.11. Algorithms for Calculating Eigenvalues

[9]. L. Qi, F. Wang and Y. Wang, “Z-eigenvalue methods for a global polynomial
optimization problem”, Mathematical Programming 118 (2009) 301-316.

[10]. T.G. Kolda and J.R. Mayo, “Shifted power method for computing tensor
eigenpairs”, SIAM J. Matrix Analysis and Applications 32 (2011) 1095-1124.

[11]. L. Han, “An unconstrained optimization approach for finding eigenvalues
of even order real symmetric tensors”, Numerical Algebra, Control and Opti-
mization 3 (2013) 583-599.

[12]. S. Hu, Z. Huang and L. Qi, “Finding the Extreme Z-Eigenvalues of Tensors
via a Sequential SDPs Method”, Numerical Linear Algebra with Applications
20 (2013) 972-984.

[13]. T.G. Kolda and J.R. Mayo, “An Adaptive Shifted Power Method for Com-
puting Generalized Tensor Eigenpairs”, SIAM J. Matrix Analysis and Applica-
tions 35 (2014) 1563-1581.

[14]. C. Hao, C. Cui and Y. Dai, “A sequential subspace projection method for
extreme Z-eigenvalues of supersymmetric tensors”, Numerical Linear Algebra
with Applications 22 (2015) 283-298.

[15]. C. Cui, Y. Dai and J. Nie, “All real eigenvalues of symmetric tensors”,
SIAM J. Matrix Analysis and Applications 35 (2014) 1582-1601.
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2.12. Determinant

[16]. S. Hu, Z. Huang, C. Ling and L. Qi, “On determinants and eigenvalue
theory of tensors”, Journal of Symbolic Computation 50 (2013) 508-531.

We investigate properties of the determinants of tensors, and their applications
in the eigenvalue theory of tensors. We show that the determinant inherits many
properties of the determinant of a matrix. These properties include: solvability
of polynomial systems, product formula for the determinant of a block tensor,
product formula of the eigenvalues and Gershgorin’s inequality. As a simple ap-
plication, we show that if the leading coefficient tensor of a polynomial system
is a triangular tensor with nonzero diagonal elements, then the system definitely
has a solution in the complex space. We investigate the characteristic polyno-
mial of a tensor through the determinant and the higher order traces. We show
that the k-th order trace of a tensor is equal to the sum of the k-th powers of the
eigenvalues of this tensor, and the coefficients of its characteristic polynomial
are recursively generated by the higher order traces. Explicit formula for the
second order trace of a tensor is given.
Another paper on determinants of tensors is:

[17]. J. Shao, H. Shan, L. Zhang, “On some properties of the determinants of
tensors”, Linear Algebra and Its Applications 439 (2013).
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2.13. Eigenvalue Inclusion

We see one paper on this:

[18]. C. Li, Y. Li and X. Kung, “New eigenvalue inclusion sets for tensors”,
Numerical Linear Algebra with Applications 21 (2014) 39-50.

In this paper, the authors give a number of eigenvalue inclusion theorems, in-
cluding a Taussky-type boundary result and a Brauer eigenvalue inclusion theo-
rem for tensors, and their applications.
Further papers on eigenvalue inclusion.

[19]. C. Li, Z. Chen and Y. Li, “A New eigenvalue inclusion set for tensors and
its applications”, Linear Algebra and Its Applications 481 (2015) 36-53.

[20]. C. Bu, Y. Wei, L. Sun and J. Zhou, “Brualdi-type eigenvalue inclusion sets
of tensors”, Linear Algebra and Its Applications 480 (2015) 168-175.

[21]. G. Wang, G. Zhou and L. Caccett, “Sharp Brauer-type Eigenvalue Inclu-
sion Theorems for Tensors”, to appear in: Pacific Journal of Optimization.
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2.14. Singular Values and Symmetric Embedding

We see the following two papers on this topic:

[22]. S. Ragnarsson and C.F. Van Loan, “Block tensors and symmetric
em2eddings”, Linear Algebra and Its Applications 438 (2013) 853-874.

[23]. Z. Chen and L. Lu, “A tensor singular values and its symmetric embedding
eigenvalues”, Journal of Computational and Applied Mathematics 250 (2013)
217-228.
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2.15. Trace Formulas

Trace formulas were first introduced in

[24]. A. Morozov and S. Shakirov, “Analogue of the identity Log Det=Trace
Log for resultants”, J. Geom. Phys. 61 (2011) 708-726.

They were further discussed in the following three papers:

[25]. J. Cooper and A. Dutle, “Spectra of uniform hypergraphs”, Linear Alg.
Appl. 436 (2012) 3268-3292.

[17]. S. Hu, Z. Huang, C. Ling and L. Qi, “On Determinants and Eigenvalue
Theory of Tensors”, Journal of Symbolic Computation 50 (2013) 508-531.

[26]. J. Shao, L. Qi and S. Hu, “Some new trace formulas of tensors with ap-
plications in spectral hypergraph theory”, Linear and Multilinear Algebra 63
(2015) 971-992.

In [26], we give some graph theoretical formulas for the trace Trk(A) of a tensor
A which do not involve the differential operators and auxiliary matrices, then
apply them to spectral hypergraph theory.

http://math.suda.edu.cn
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2.16. Z-Spectral Radius

Let A ∈ Sm,n. We may define its spectral radius as

ρ(A) = max{|λ| : λ is an eigenvalue of A},

its E-spectral radius as

ρE(A) = max{|λ| : λ is an E− eigenvalue of A}.

Here, |λ| means the modulus of λ as eigenvalues and E-eigenvalues of a sym-
metric tensor may not be real. In practice, it seems that the Z-spectral radius of
A:

ρZ(A) = max{|λ| : λ is an Z− eigenvalue of A},
is more useful and meaningful. Here, |λ| means the absolute value of λ as Z-
eigenvalues are always real.

First application of Z-spectral radius is the best rank-one approximation to A,
as discussed earlier.

http://math.suda.edu.cn
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2.17. The Formula of Z-Spectral Radius

In the following paper,

[27]. L. Qi, “The Best Rank-One Approximation Ratio of a Tensor Space”,
SIAM Journal on Matrix Analysis and Applications 32 (2011) 430-442,

a formula for Z-spectral radius is given as follows:

ρZ(A) = max{|Axm| : ‖x‖2 = 1,x ∈ <n}.

Furthermore, it was shown there that ρZ(·) is a norm of Sm,n. The minimum
ratio of min{ρZ(A)

‖A‖F : A ∈ Sm,n} is positive and can be used to estimate the
linear convergence rate of the successive best rank-one approximation method.
It seems that Z-spectral radius is more essential. More research is needed on
this topic.
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2.18. Generalized Eigenvalues

Generalized Eigenvalues were introduced in the following paper:

[28]. K. C. Chang, K. Pearson and T. Zhang, “Perron Frobenius Theorem for
nonnegative tensors”, Commu. Math. Sci. 6 (2008) 507-520.

It has been further studied in the following papers:

[13]. T.G. Kolda and J.R. Mayo, “An Adaptive Shifted Power Method for Com-
puting Generalized Tensor Eigenpairs”, SIAM J. Matrix Analysis and Applica-
tions 35 (2014) 1563-1581.

[15]. C. Cui, Y. Dai and J. Nie, “All real eigenvalues of symmetric tensors”,
SIAM J. Matrix Analysis and Applications 35 (2014) 1582-1601.

[29]. W. Ding and Y. Wei, “Generalized tensor eigenvalue problems”, SIAM J.
Matrix Analysis and Applications 36 (2015) 1073-1099.
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2.19. Perturbation bounds of Eigenvalues

Perturbation of eigenvalues was discussed in the following paper:

[30]. M. Che, L. Qi and Y. Wei, “Perturbation bounds of tensor eigenvalues and
singular values problems”, Linear Multilinear Algebra 64 (2016) 622-652.

W. Li and M. Ng have several papers on perturbation bounds of eigenvalues of
nonnegative tensors. This will be described in the next section.
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3. Nonnegative Tensors
A tensor A ∈ Tm,n is called a nonnegative tensor if all of its entries are nonneg-
ative. The eigenvalue problem of nonnegative tensors has applications in multi-
linear pagerank, spectral hypergraph theory and higher-order Markov chains,
etc. The eigenvalue problem of general or symmetric tensors is in general NP-
hard. On the other hand, recently, it was discovered that the largest eigenvalue
problem of a nonnegative tensor has linearly convergent algorithms. The whole
Perron-Frobenius theory of nonnegative matrices can be extended to nonneg-
ative tensors, with more varieties: there are parallel theories based upon irre-
ducible and weakly irreducible nonnegative tensors. A survey papers on eigen-
values of nonnegative tensors is:

[6]. K.C. Chang, L. Qi and T. Zhang, “A survey on the spectral theory of nonneg-
ative tensors”, Numerical Linear Algebra with Applications 20 (2013) 891-912.

Recently, study on eigenvalues of nonnegative tensors was further extended to
essentially nonnegative tensors, M-tensors, copositive tensors, completely posi-
tive tensors.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 33 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.1. The Perron-Frobenius Theorem

The following paper started the Perron-Frobenius Theory for irreducible non-
negative tensors:

[28]. K. C. Chang, K. Pearson and T. Zhang, “Perron Frobenius Theorem for
nonnegative tensors”, Commu. Math. Sci. 6 (2008) 507-520.

The following paper started the Perron-Frobenius Theory for weakly irreducible
nonnegative tensors:

[31]. S. Friedland, S. Gaubert and L. Han, “Perron-Frobenius theorem for non-
negative multilinear forms and extensions”, Linear Algebra and Its Applications
438 (2013) 738-749.

The other papers made contributions to the Perron-Frobenius Theory for non-
negative tensors include:

[32]. K.J. Pearson, “Essentially positive tensors”, International Journal of Alge-
bra 9 (2010) 421-427.

[33]. Y. Yang and Q. Yang, “Further results for Perron-Frobenius Theorem for
nonnegative tensors”, SIAM Journal on Matrix Analysis and Applications 31
(2010) 2517-2530.

[34]. K.C. Chang, K. Pearson and T. Zhang, “Primitivity, the convergence of
the NQZ method, and the largest eigenvalue for nonnegative tensors”, SIAM
Journal on Matrix Analysis and Applications 32 (2011) 806-819.

[35]. Q. Yang and Y. Yang, “Further results for Perron-Frobenius Theorem for
nonnegative tensors II”, SIAM Journal on Matrix Analysis and Applications 32
(2011) 1236-1250.
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3.2. The Perron-Frobenius Theorem

[36]. Y. Yang and Q. Yang, “Geometric simplicity of spectral radius of nonneg-
ative irreducible tensors”, Frontiers of Mathematics in China 8 (2013) 129-140.

[37]. S. Hu, Z. Huang and L. Qi, “Strictly nonnegative tensors and nonnegative
tensor partition”, Science China Mathematics 57 (2014) 181-195.

[38]. S. Hu and L. Qi, “A necessary and sufficient condition for existence of a
positive Perron vector”, SIAM Journal on Matrix Analysis and Applications 37
(2016) 1747-1770.

An eigenvalue of A is called real geometrically simple if it has only one inde-
pendent real eigenvector.

In spectral hypergraph theory, it is discovered that adjacency tensors, Laplacian
tensors, signless Laplacian tensors are all reducible, but they are weakly irre-
ducible if the hypergraph is connected. Thus, in spectral hypergraph theory,
weakly irreducible nonnegative tensor theory is more useful.

http://math.suda.edu.cn
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3.3. The Perron-Frobenius Theorem: The General Form

Theorem 3.1 (The Perron-Frobenius Theorem for Nonnegative Tensors) If
A is a nonnegative tensor of order m and dimension n, then ρ(A) is an eigen-
value of A with a nonnegative eigenvector x ∈ <n+. (Yang and Yang 2010)

The spectral radius ρ(A) > 0 if and only if A is nontrivially nonnegative. The
spectral radius ρ(A) is an eigenvalue ofA with a positive eigenvector x ∈ <n++

if and only if A is strongly nonnegative. If A is weakly irreducible, then A is
strongly nonnegative. (Hu and Qi 2016)

Suppose that furthermore A is irreducible. If λ is an eigenvalue with a nonneg-
ative eigenvector, then λ = ρ(A). (Chang, Pearson and Zhang 2008)

In this case, if there are k distinct eigenvalues of modulus ρ(A), then the eigen-
values are ρ(A)ei2πj/k, where j = 0, · · · , k − 1. The number k is called the
cyclic index of A. (Yang and Yang 2010)

If moreover A is primitive, then its cyclic number is 1. (Chang, Pearson and
Zhang 2011)

If A is essentially positive or even-order irreducible, then the unique positive
eigenvalue is real geometrically simple. (Pearson 2010) (Yang and Yang 2011)

http://math.suda.edu.cn
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3.4. The Wielandt-Collatz characterization of ρ(A)

Chang, Pearson and Zhang (2008) extended the well-known Collatz minimax
theorem for irreducible nonnegative matrices to irreducible nonnegative tensors.
This theorem paves the way for constructing algorithms for calculating ρ(A).
This property may be also called the Wielandt-Collatz characterization of ρ(A).
Friedland, Gaubert and Han (2013) established this result for weakly irreducible
nonnegative tensors.

Theorem 3.2 Assume thatA is a weakly irreducible nonnegative tensor of order
m and dimension n. Then

Minx∈<n
++

Maxxi>0
(Axm−1)i

xm−1
i

= λ0 = Maxx∈<n
++

Minxi>0
(Axm−1)i

xm−1
i

, (3)

where λ0 = ρ(A) is the unique positive eigenvalue corresponding to the positive
eigenvector.
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3.5. Algorithms for Finding the Largest Eigenvalue of a Nonnegative
Tensor

Based upon Theorem 3.2, Ng, Qi and Zhou proposed an algorithm for calculat-
ing ρ(A) in:

[39]. M. Ng, L. Qi and G. Zhou, “Finding the largest eigenvalue of a non-
negative tensor”, SIAM Journal on Matrix Analysis and Applications 31 (2009)
1090-1099.

Other papers on algorithms for finding the largest eigenvalue of a nonnegative
tensor include:

[40]. Y. Liu, G. Zhou and N.F. Ibrahim, “An always convergent algorithm for
the largest eigenvalue of an irreducible nonnegative tensor”, Journal of Compu-
tational and Applied Mathematics 235 (2010) 286-292.

[41]. G. Zhou, L. Caccetta, K.L. Teo and S-Y. Wu, “Nonnegative polynomial
optimization over unit spheres and convex programming relaxations”, SIAM
Journal on Optimization 22 (2012) 987-1008.

[42]. G. Zhou, L. Qi and S.Y. Wu, “Efficient algorithms for computing the
largest eigenvalue of a nonnegative tensor”, Frontiers of Mathematics in China
8 (2013) 155-168.
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3.6. Convergence of The Ng-Qi-Zhou Algorithm

Chang, Pearson and Zhang (2011) proved the convergence of the Ng-Qi-Zhou
algorithm for any starting point in (<n+)0 if and only if the tensor is a primitive
tensor.

Theorem 3.3 (Chang, Pearson and Zhang 2011) The sequences generated by
the Ng-Qi-Zhou algorithm converges to the unique positive eigenvalue ρ(A) for
any starting point x(0) ∈ (<n+)0 if and only if A is primitive.

On the other hand, Friedland, Gaubert and Han (2013) proved the convergence
of the Ng-Qi-Zhou algorithm for any starting point in <n++ if A is a weakly
primitive tensor.

Theorem 3.4 (Friedland, Gaubert and Han 2013) If A is a weakly primitive
tensor, then the sequences generated by the Ng-Qi-Zhou algorithm converges to
the unique positive eigenvalue ρ(A) if x(0) ∈ <n++.

We see that these two theorems are consistent.
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3.7. Linear Convergence of The Ng-Qi-Zhou Algorithm

Zhang and Qi established linear convergence of the Ng-Qi-Zhou algorithm for
essentially positive tensors in the following paper:

[43]. L. Zhang and L. Qi, “Linear convergence of an algorithm for computing
the largest eigenvalue of a nonnegative tensor”, Numerical Linear Algebra with
Applications 19 (2012) 830-841.

In the following paper, Zhang, Qi and Xu defined weakly positive tensors and
established linear convergence of the Liu-Zhou-Ibrahim algorithm for weakly
positive tensors.

[44]. L. Zhang, L. Qi and Y. Xu, “Linear convergence of the LZI algorithm
for weakly positive tensors”, Journal of Computational Mathematics 30 (2012)
24-33.
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3.8. Symmetric Nonnegative Tensors

Let A ∈ Sm,n be a nonnegative tensor. In the following paper:

[45]. L. Qi, “Symmetric nonnegative tensors and copositive tensors”, Linear
Algebra and Its Applications 439 (2013) 228-238.

It was proved that

ρ(A) = max{Axm : x ∈ <n+}.
The following is another paper on symmetric nonnegative tensors:

[46]. G. Zhou, L. Qi and S.Y. Wu, “On the largest eigenvalue of a symmetric
nonnegative tensor”, Numerical Linear Algebra with Applications 20 (2013)
913-928.
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3.9. Essentially Nonnegative Tensors

A tensor is called an essentially nonnegative tensor if its off-diagonal entries are
nonnegative. The followings are two papers on essentially nonnegative tensors.

[47]. S. Hu, G. Li, L. Qi and Y. Song, “Finding the maximum eigenvalue of
essentially nonnegative symmetric tensors via sum of squares programming”,
Journal of Optimization Theory and Applications 158 (2013) 717-738.

[48]. L. Zhang, L. Qi, Z. Luo and Y. Xu, “The dominant eigenvalue of an
essentially nonnegative tensor”, Numerical Linear Algebra with Applications
20 (2013) 929-941.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 42 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.10. More papers on Computation of Eigenvalues of Nonnegative
Tensors

The followings are some more papers on computation of eigenvalues of nonneg-
ative tensors.

[49]. G. Zhou, L. Qi and S.Y. Wu, “Efficient algorithms for computing the
largest eigenvalue of a nonnegative tensor”, Frontiers of Mathematics in China
8 (2013) 155-168.

[50]. G. Zhou, L. Caccetta, K.L. Teo and S-Y. Wu, “Nonnegative polynomial
optimization over unit spheres and convex programming relaxations”, SIAM
Journal on Optimization 22 (2012) 987-1008.

[51]. Z. Chen, L. Qi, Q. Yang and Y. Yang, “The solution methods for the largest
eigenvalue (singular value) of nonnegative tensors and convergence analysis”,
Linear Algebra and Its Applications 439 (2013) 3713-3733.

[52]. Q. Ni and L. Qi, “A quadratically convergent algorithm for finding the
largest eigenvalue of a nonnegative homogeneous polynomial map”, Journal of
Global Optimization 61 (2015) 627-641.
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3.11. Perturbation bounds of Eigenvalues of Nonnegative Tensors

Li and Ng have worked on perturbation bounds of eigenvalues of nonnegative
tensors.

[53]. W. Li, L. Cui and M. Ng, “The perturbation bound for the Perron vector
of a transition probability tensor”, Numerical Linear Algebra with Applications
20 (2013) 985-1000.

[54]. W. Li and M. Ng, “The perturbation bound for the spectral radius of a
nonnegative tensor”, Advances of Numerical Analysis, 2014, Article ID 10952
(2014).

[55]. W. Li and M. Ng, “Some bounds for the spectral radius of nonnegative
tensors”, Numerische Mathematik 130 (2015) 315-335.
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3.12. Higher-Order Markov Chains

Ng, Qi and Zhou (2009) discussed the application of the largest eigenvalue prob-
lem of a nonnegative tensor in higher-order Markov chains. They applied the
method for finding the largest eigenvalue of a nonnegative tensor to compute the
probability distribution of a higher-order Markov Chain. More papers of on this
topic:

[56]. W. Li and M. Ng, “On the limiting probability distribution of a transition
probability tensor”, Linear and Multilinear Algebra 62 (2014) 362-385.

[57]. S. Hu and L. Qi, “Convergence of a second order Markov chain”, Applied
Mathematics and Computation 241 (2014) 183-192.

[58]. W. Li and M. Ng, “On the limiting probability distribution of a transition
probability tensor”, Linear and Multilinear Algebra 62 (2014) 362-385.
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3.13. Z-Eigenvalues of Nonnegative Tensors

As we said, the higher-order Markov chain problem is related with Z-
eigenvalues of nonnegative tensors. In the study of spectral hypergraphy the-
ory, we also see some papers are linked with Z-eigenvalues of nonnegative ten-
sors. Some papers reveal some similarities as well as differences between the
Z-eigenvalues and H-eigenvalues of a nonnegative tensor:

[59]. K.C. Chang, K.J. Pearson and T. Zhang, “Some variational principles of
the Z-eigenvalues for nonnegative tensors”, Linear Algebra and Applications
438 (2013) 4166-4182.

[60]. K.C. Chang and T. Zhang, “On the uniqueness and non-uniqueness of the
positive Z-eigenvector for transition probability tensors”, Journal of Mathemat-
ical Analysis and Applications 408 (2013) 525-540.
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3.14. Papers on Singular Values of Nonnegative Rectangular Ten-
sors

[61]. K.C. Chang, L. Qi and G. Zhou, “Singular values of a real rectangular
tensor”, Journal of Mathematical Analysis & Applications 370 (2010) 284-294.

[62]. K. C. Chang and T. Zhang, “Multiplicity of singular values for tensors”,
Commu. Math. Sci. 7 (2009) 611-625.

[63]. Y. Yang and Q. Yang, “Singular values of nonnegative rectangular ten-
sors”, Frontiers of Mathematics in China 6 (2011) 363-378.

[64]. G. Zhou, L. Caccetta and L. Qi, “Convergence of an algorithm for the
largest singular value of a nonnegative rectangular tensor”, Linear Algebra and
Its Applications 438 (2013) 959-968.

[65]. L. Zhang, “Linear convergence of an algorithm for the largest singular
value of a real rectangular tensor”, Frontiers of Mathematics in China 8 (2013)
141-153.
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3.15. Nonlinear Positive Operators

In the following paper, a nonlinear version of Krein Rutman Theorem is estab-
lished. A unified proof of the Krein Rutman Theorem for linear operators and
for nonlinear operators, and of the Perron-Frobenius theorem for nonnegative
matrices and for nonnegative tensors, is presented.

[66]. K.C. Chang, “A nonlinear Krein Rutman theorem”, Journal of Systems
Science and Complexity 22 (2009) 542-554.

Further papers on this topic:

[67]. Y. Song and L. Qi, “The existence and uniqueness of eigenvalue for mono-
tone homogeneous mapping pairs”, Nonlinear Analysis 75 (2012) 5283-5293.

[68]. Y. Song and L. Qi, “Positive eigenvalue-eigenvector of nonlinear positive
mappings in a Banach space”, Frontiers of Mathematics in China 9 (2014) 181-
199.
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4. Applications
The introduction of eigenvalues and E-eigenvalues of higher order tensors was
motivated by the positive definiteness of multivariate homogeneous forms and
the best rank-one approximation of higher order tensors. We now review the
other applications and connections of eigenvalues of higher order tensors. The
first notable application or connection is on magnetic resonance imaging.
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4.1. Magnetic Resonance Imaging

The Nobel Prize in Physiology or Medicine 2003: Paul C Lauterbur and Peter
Mansfield for their discoveries concerning “Magnetic Resonance Imaging”.

Summary: Imaging of human internal organs with exact and non-invasive meth-
ods is very important for medical diagnosis, treatment and follow-up. This
year’s Nobel Laureates in Physiology or Medicine have made seminal discov-
eries concerning the use of magnetic resonance to visualize different structures.
These discoveries have led to the development of modern magnetic resonance
imaging, MRI, which represents a breakthrough in medical diagnostics and re-
search.

Atomic nuclei in a strong magnetic field rotate with a frequency that is depen-
dent on the strength of the magnetic field. Their energy can be increased if
they absorb radio waves with the same frequency (resonance). When the atomic
nuclei return to their previous energy level, radio waves are emitted. These dis-
coveries were awarded the Nobel Prize in Physics in 1952. During the following
decades, magnetic resonance was used mainly for studies of the chemical struc-
ture of substances. In the beginning of the 1970s, this year’s Nobel Laureates
made pioneering contributions, which later led to the applications of magnetic
resonance in medical imaging.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 50 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4.2. Diffusion Tensor Imaging

Diffusion magnetic resonance imaging (D-MRI) has been developed in biomed-
ical engineering for decades. It measures the apparent diffusivity of water
molecules in human or animal tissues, such as brain and blood, to acquire bi-
ological and clinical information. In tissues, such as brain gray matter, where
the measured apparent diffusivity is largely independent of the orientation of the
tissue (i.e., isotropic), it is usually sufficient to characterize the diffusion char-
acteristics with a single (scalar) apparent diffusion coefficient (ADC). However,
in anisotropic media, such as skeletal and cardiac muscle and in white matter,
where the measured diffusivity is known to depend upon the orientation of the
tissue, no single ADC can characterize the orientation-dependent water mobility
in these tissues. Because of this, a diffusion tensor model was proposed years
ago to replace the diffusion scalar model. This resulted in Diffusion Tensor
Imaging (DTI).
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4.3. Diffusion Tensor

A diffusion tensorD is a second order three dimensional fully symmetric tensor.
Under a Cartesian laboratory co-ordinate system, it is represented by a real three
dimensional symmetric matrix, which has six independent elements D = (dij)
with dij = dji for i, j = 1, 2, 3. There is a relationship

ln[S(b)] = ln[S(0)]−
3∑

i,j=1

bdijxixj. (4)

Here S(b) is the signal intensity at the echo time, x = (x1, x2, x3) is the unit
direction vector, satisfying

∑3
i=1 x

2
i = 1, the parameter b is given by

b = (γδg)2(∆− δ

3
),

γ is the proton gyromagnetic ratio, ∆ is the separation time of the two diffu-
sion gradients, δ is the duration of each gradient lobe. There are six unknown
variables dij in the formula (10). By applying the magnetic gradients in six or
more non-collinear, non-coplaner directions, one can solve (10) and get the six
independent elements dij.
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4.4. Eigenvalues of Diffusion Tensor

However, such elements dij cannot be directly used for biological or clinical
analysis, as they vary under different laboratory coordinate systems. Thus, af-
ter obtaining the values of these six independent elements by MRI techniques,
the biomedical engineering researchers will further calculate some characteristic
quantities of this diffusion tensorD. These characteristic quantities are rotation-
ally invariant, independent from the choice of the laboratory coordinate system.
They include the three eigenvalues λ1 ≥ λ2 ≥ λ3 of D, the mean diffusivity
(MD), the fractional anisotropy (FA), etc. The largest eigenvalue λ1 describes
the diffusion coefficient in the direction parallel to the fibres in the human tis-
sue. The other two eigenvalues describe the diffusion coefficient in the direction
perpendicular to the fibres in the human tissue. The mean diffusivity is

MD =
λ1 + λ2 + λ3

3
,

while the fractional anisotropy is

FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

,

where 0 ≤ FA ≤ 1. If FA = 0, the diffusion is isotropic. If FA = 1, the
diffusion is anisotropic.
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4.5. Higher-Order Diffusion Tensor Imaging

However, DTI is known to have a limited capability in resolving multiple fibre
orientations within one voxel. This is mainly because the probability density
function for random spin displacement is non-Gaussian in the confining en-
vironment of biological tissues and, thus, the modeling of self-diffusion by a
second order tensor breaks down. Hence, researchers presented various Higher
Order Diffusion Tensor Imaging models to overcome this problem:

[H1]. J.H. Jensen, J.A. Helpern, A. Ramani, H. Lu and K. Kaczynski, “Diffu-
sional kurtosis imaging: The quantification of non-Gaussian water diffusion by
means of magnetic resonance imaging”, Magnetic Resonance in Medicine 53
(2005) 1432-1440.
[H2]. H. Lu, J.H. Jensen, A. Ramani and J.A. Helpern, “Three-dimensional
characterization of non-Gaussian water diffusion in humans using diffusion kur-
tosis imaging”, NMR in Biomedicine 19 (2006) 236-247.
[H3]. E. Ozarslan and T.H. Mareci, “Generalized diffusion tensor imaging and
analytical relationships between diffusion tensor imaging and high angular reso-
lution diffusion imaging”, Magnetic Resonance in Medicine 50 (2003) 955-965.
[H4]. D.S. Tuch, “Q-ball imaging”, Magnetic Resonance in Medicine 52 (2004)
1358-1372,
[H5]. D.S. Tuch, T.G. Reese, M.R. Wiegell, N.G. Makris, J.W. Belliveau
and V.J. Wedeen, “High angular resolution diffusion imaging reveals intravoxel
white matter fiber heterogeneity”, Magnetic Resonance in Medicine 48 (2002)
454-459.
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4.6. Diffusion Kurtosis Tensor Imaging

The authors of [H1] and [H2] proposed to use a fourth order three dimensional
fully symmetric tensor W , called the diffusion kurtosis (DK) tensor, to describe
the non-Gaussian behavior. Under a Cartesian laboratory co-ordinate system,
it is represented by a real fourth order three dimensional fully symmetric array,
which has fifteen independent elements W = (wijkl) with wijkl being invariant
for any permutation of its indices i, j, k, l = 1, 2, 3. The relationship (10) can be
further expanded (adding a second Taylor expansion term on b) to:

ln[S(b)] = ln[S(0)]−
3∑

i,j=1

bdijxixj +
1

6
b2M2

D

3∑
i,j,k,l=1

wijklxixjxkxl. (5)

There are fifteen unknown variables wijkl in the formula (5). By applying the
magnetic gradients in fifteen or more non-collinear, non-coplaner directions,
one can solve (5) and get the fifteen independent elements wijkl.

Again, the fifteen elements wijkl vary when the laboratory co-ordinate system is
rotated. What are the coordinate system independent characteristic quantities of
the DK tensor W ? Are there some type of eigenvalues of W , which can play
a role here? Ed X. Wu and his group at Hong Kong University studied these
questions. They searched by google possible papers on eigenvalues of higher
order tensors. They found my paper [1]. This resulted in a surprising e-mail to
me in February, 2007, and consequently, some collaborative studies on diffusion
kurtosis tensor imaging.
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4.7. D-Eigenvalues and Other Invariants

We proposed D-eigenvalues for the diffusion kurtosis tensor W and some other
invariants to describe the DKI model.

[69]. L. Qi, Y. Wang and E.X. Wu, “D-eigenvalues of diffusion kurtosis ten-
sors”, Journal of Computational and Applied Mathematics 221 (2008) 150-157.
[70]. L. Qi, D. Han and E.X. Wu, “Principal invariants and inherent parameters
of diffusion kurtosis tensors”, Journal of Mathematical Analysis and Applica-
tions 349 (2009) 165-180.
[71]. D. Han, L. Qi and E.X. Wu, “Extreme diffusion values for non-Gaussian
diffusions”, Optimization and Software 23 (2008) 703-716.
[72]. E.S. Hui, M.M. Cheung, L. Qi and E.X. Wu, “Towards better MR charac-
terization of neural tissues using directional diffusion kurtosis analysis”, Neu-
roimage 42 (2008) 122-134.
[73]. E.S. Hui, M.M. Cheung, L. Qi and E.X. Wu, “Advanced MR diffusion
characterization of neural tissue using directional diffusion kurtosis analysis”,
Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 3941-3944.
[74]. M.M. Cheung, E.S. Hui, K.C. Chan, J.A. Helpern, L. Qi, E.X. Wu, “Does
diffusion kurtosis imaging lead to better neural tissue characterization? A rodent
brain maturation study”, Neuroimage 45 (2009) 386-392.
[75]. X. Zhang, C. Ling, L. Qi and E.X. Wu “The measure of diffusion skewness
and kurtosis in magnetic resonance imaging”, Pacific Journal of Optimization 6
(2010) 391-404.
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4.8. Paper by Bloy and Verma

The authors of [H3], [H4] and [H5] suggested to use a single higher even or-
der tensor to replace the second order diffusion tensor in (10). In particular, in
[H4], Tuch proposed to reconstruct the diffusion orientation distribution func-
tion (ODF) of the underlying fiber population of a biological tissue. Experi-
ments show that the QBI model may identify the underlying fiber directions
well in the multiple fiber situations.

In 2008, Bloy and Verma in their paper cited my paper [1], and proposed to use
Z-eigenvalues to identify principal directions of fibres in the Q-balling model.

[76]. L. Bloy and R. Verma, “On computing the underlying fiber directions from
the diffusion orientation distribution function”, in: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2008, D. Metaxas, L. Axel, G.
Fichtinger and G. Székeley, eds., (Springer-Verlag, Berlin, 2008) pp. 1-8.
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4.9. Positive Semi-Definite Tensor Imaging

An intrinsic property of the diffusivity profile is positive semi-definite. Hence,
the diffusion tensor, either second or higher order, must be positive semi-
definite. For second order diffusion tensor, one may diagonalize the second
order diffusion tensor and project it to the symmetric positive semi-definite cone
by setting the negative eigenvalues to zero. Recently, some methods have been
proposed to preserve positive semi-definiteness for a fourth order diffusion ten-
sor. None of them is comprehensive to work for arbitrary high order diffusion
tensors.

[77]. L. Qi, G. Yu and E.X. Wu, “Higher order positive semi-definite diffusion
tensor imaging”, SIAM Journal on Imaging Sciences 3 (2010) 416-433.

In the above paper, we propose a comprehensive model to approximate the ADC
profile by a positive semi-definite diffusion tensor of either second or higher
order. We call this model PSDT (positive semi-definite diffusion tensor).

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 58 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4.10. The PSDT Model

We use x = (x1, x2, x3)
T to denote the magnetic field gradient direction. As-

sume that we use an mth order diffusion tensor. Then the diffusivity function
can be expressed as

d(x) =
m∑
i=0

m−i∑
j=0

dijx
i
1x

j
2x

m−i−j
3 . (6)

A diffusivity function d can be regarded as an mth order symmetric tensor.
Clearly, there are

N =
m+1∑
i=1

i =
1

2
(m+ 1)(m+ 2)

terms in (13). Hence, each diffusivity function can also be regarded as a vector
d in <N , indexed by ij, where j = 0, · · · ,m− i, i = 0, · · · ,m.

With the discussion above, it is ready now to formulate the PSDT (positive semi-
definite tensor) model. It is as follows:

P (d∗) = min{P (d) : λmin(d) ≥ 0}, (7)

where P is a convex quadratic function of d, λmin is the smallest Z-eigenvalue
of d.

Theorem 4.1 λmin(d) is a continuous concave function. Hence, PSDT (7) is a
convex optimization problem.
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4.11. Maps of Characteristic Quantities of PSDT
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Figure 1 The map of λmax.
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Figure 2 The map of MPSDT .
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4.12. Diffusion Orientation Distribution Function

In the introduction of [14], Bloy and Verma described themselves as within
the QBI community. What is QBI? While it is highly regarded by some MRI
researchers? Bloy and Verma apply Z-eigenvalues to ODF. What is ODF?

In the single fiber case, the DTI model works well. By diagonalization, the
surface corresponding to the diffusion tensor is an ellipsoid with its long axis
aligned with the fiber orientation. However, many voxels in diffusion MRI vol-
umes potentially have multiple fibers with crossing, kissing or diverging con-
figuration. Then ADC profile estimate from DTI fails to recover multiple fiber
orientation.

In [H4], Tuch proposed to a HARDI technique that reconstruct the diffusion
orientation distribution function (ODF) of the underlying fiber population of a
biological tissue.
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4.13. The Q-Ball Imaging

The ODF gives a good representation of underlying fiber distribution. Tuch [H4]
showed that the ODF in a unit direction u, ψ(u), could be estimated directly
from the raw HARDI signal S by the Funk-Radon transformation:

ψ(u) =

∫
Ω

δ(u>x)S(x)dx, (8)

where Ω = {x ∈ <3 : x2
1 + x2

2 + x2
3 = 1}, δ is the Dirac delta function.

As the QBI model may identify the underlying fiber directions well in the mul-
tiple fiber situations, it has been studied intensively. This forms the QBI com-
munity, mentioned in the introduction of [13], by Bloy and Verma.
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4.14. Nonnegative Diffusion Orientation Distribution Function

The Funk-Radon transformation (8) involves the Dirac delta function, which is
not a real valued function. The computation is not so easy. In 2007, Decoteaux
et al proposed to use the Funk-Hecke theorem and the spherical harmonics to
simplify the Funk-Radon transformation. In 2006, Descoteaux et all, showed
that there is a close relation between spherical harmonics and higher order ten-
sors. Thus, the QBI approach is connected to higher order tensors too. Bloy and
Verma [13] thus applied Z-eigenvalues of higher order tensors, proposed in Qi
[1], to this approach.
We propose a nonnegative diffusion orientation distribution function model in
the following paper.

[78]. L. Qi, G. Yu and Y. Xu, “Nonnegative diffusion orientation distribution
function”, Journal of Mathematical Imaging and Vision 45 (2013) 103-113.

Two more paperson this topic:

[79]. S.L. Hu, Z.H. Huang, H.Y. Ni and L. Qi, “Positive definiteness of diffusion
kurtosis imaging”, Inverse Problems and Imaging 6 (2012) 57-75.

[80]. Chen, Y., Dai, Y., Han, D., Sun, W.: Positive semidefinite generalized dif-
fusion tensor imaging via quadratic semidefinite programming. SIAM J. Imag-
ing Sci. 6, 1531-1552 (2013)
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4.15. Space Tensor Conic Programming

Yinye Ye at Stanford University is a Visiting Chair Professor in our department.
In April 2009, he visited our department. We discussed the PSDT model. He
suggested to investigate this problem in a viewpoint of conic linear program-
ming (CLP) problem. Actually, S = {d ∈ <N : λmin(d) ≥ 0} is a convex cone
in <N . We worked together on the following paper on Space Tensor Conic
Programming:

[81]. L. Qi and Y. Ye, “Space Tensor Conic Programming”, Computational
Optimization and Applications 59 (2014) 307-319.

During the last two decades, major developments in convex optimization was fo-
cusing on conic linear programming. Conic Linear programming (CLP) prob-
lems include linear programming (LP) problems, semi-definite programming
(SDP) problems and second-order cone programming (SOCP).

Space tensors appear in physics and mechanics. They are real physical entities.
Mathematically, they are tensors of three dimension. All the mth order symmet-
ric space tensors, where m is a positive even integer, form an N -dimensional
space, where N = 1

2(m+1)(m+2). Using the method given in [5], we identify
in polynomial-time if an mth order symmetric space tensor is positive semi-
definite or not.
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4.16. More Papers on Space Tensor Programming

Three more papers on new algorithms for solving space tensor conic linear pro-
gramming problems are as follows.

[82]. G. Li, L. Qi and G. Yu, “Semismoothness of the maximum eigenvalue
function of a symmetric tensor and its application”, Linear Algebra and Its Ap-
plications 438 (2013) 813-833.

[83]. L. Qi, Y. Xu, Y. Yuan and X. Zhang, “A cone constrained convex program:
structure and algorithms”, Journal of Operations Research Society of China 1
(2013) 37-53.

[84]. S. Hu, Z. Huang and L. Qi, “Finding the Extreme Z-Eigenvalues of Tensors
via a Sequential SDPs Method”, Numerical Linear Algebra with Applications
20 (2013) 972-984.
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4.17. Image Authenticity Verification

Another notable application of eigenvalues of higher-order tensors is the image
authenticity verification - to verify a photo or a picture is true or false. Clearly,
this problem is also very significant in the real world. A well-known news story
is that a hunter named Zhou recapatured a pasterboard tiger, and claimed to have
discovered a rare species. This is called “Zhou tiger” on the internet. This at-
tracted the attention of imaging scientists to invent adequate image authenticity
verification methods to verify this. Two papers, Yu, Ng and Sun (2008) and Cao
and Kot (2010), have addressed this problem.

A paper addressed this problem by further developing the concept of eigenvalue
of higher-order tensors and applying it to this problem. Comparing to previous
methods of Yu, Ng and Sun (2008) and Cao and Kot (2010), the new algorithm
provides a more intuitive and reliable result. The paper is as follows.

[85]. F. Zhang, B. Zhou and L. Peng, “Gradient skewness tensors and local illu-
mination detection for images”, Journal of Computational and Applied Mathe-
matics volume 237 (2013) 663-671.
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4.18. The Abstract of The Zhang, Zhou and Peng Paper

In this paper, we propose the definition of D-eigenvalue for an arbitrary order
tensor related with a second-order tensor D, and introduce the gradient skewness
tensor which involves a three-order tensor derived from the skewness statistic of
gradient images. As we happen to find out that the skewness value of oriented
gradients of an image can measure the directional characteristic of illumination,
the local illumination detection problem for an image can be abstracted as solv-
ing the largest D-eigenvalue of gradient skewness tensors. We study the prop-
erties of D-eigenvalue, and especially for gradient skewness tensors we provide
the calculation methods of its D-eigenvalues and D-characteristic polynomial.
Some numerical experiments show its application in illumination detection. Our
method also presents excellent results in a class of image authenticity verifica-
tion problem, which is to distinguish real and flat objects in a photograph.
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4.19. Ellipticity in Solid Mechanics

In Solid Mechanics, the elasticity tensor A = (aijkl) is partially symmetric in
the sense that for any i, j, k, l, we have aijkl = akjil = ailkj. We say that they
are strongly elliptic if and only if

f(x, y) ≡ Axyxy ≡
n∑

i,j,k,l=1

aijklxiyjxkyl > 0,

for all unit vectors x, y ∈ <n, n = 2 or 3. For an isotropic material, some
inequalities have been established to judge the strong ellipticity. See

[S1]. J.K. Knowles and E. Sternberg, “On the ellipticity of the equations of
non-linear elastostatics for a special material”, J. Elasticity, 5 (1975) 341-361;
[S2]. J.K. Knowles and E. Sternberg, “On the failure of ellipticity of the equa-
tions for finite elastostatic plane strain”, Arch. Ration. Mech. Anal. 63 (1977)
321-336;
[S3]. H.C. Simpson and S.J. Spector, “On copositive matrices and strong ellip-
ticity for isotrropic elstic materials”, Arch. Rational Mech. Anal. 84 (1983)
55-68;
[S4]. P. Rosakis, “Ellipticity and deformations with discontinuous deformation
gradients in finite elastostatics”, Arch. Ration. Mech. Anal. 109 (1990) 1-37:
[S5]. Y. Wang and M. Aron, “A reformulation of the strong ellipticity conditions
for unconstrained hyperelastic media”, Journal of Elasticity 44 (1996) 89-96.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 69 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4.20. M-Eigenvalues

In the following two papers, we studied conditions for strong ellipticity and
introduced M-eigenvalues for the ellipticity tensor A:

[86]. L. Qi, H.H. Dai and D. Han. “Conditions for strong ellipticity and M-
eigenvalues”, Frontiers of Mathematics in China 4 (2009) 349-364;
[87]. D. Han, H.H. Dai and L. Qi, “Conditions for strong ellipticity of
anisotropic elastic materials”, Journal of Elasticity 97 (2009) 1-13.

Denote A·yxy as a vector whose ith component is
∑n

j,k,l=1 aijklyjxkyl, and
Axyx· as a vector whose lth component is

∑n
i,j,k=1 aijklxiyjxk. If λ ∈ <, x ∈

<n and y ∈ <n satisfy {
A·yxy = λx, Axyx· = λy,

xTx = 1, yTy = 1,
(9)

we call λ an M-eigenvalue of A, and call x and y left and right M-eigenvectors
of A, associated with the M-eigenvalue λ. Here, the letter “M” stands for me-
chanics.

Theorem 4.2 M-eigenvalues always exist. The strong ellipticity condition holds
if and only if the smallest M-eigenvalue of the elasticity tensor A is positive.
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5. PSD and SOS Tensors
We now have two checkable, conditionally sufficient and necessary conditions
for positive definiteness and semi-definiteness of some classes of some even
order symmetric tensors.

• An even order symmetric Z tensor is positive semi-definite (definite) if and
only if it is a (strong) M tensor;

• An even order symmetric Cauchy tensor is positive semi-definite if and only
if its generating vector is positive; it is positive definite if and only if fur-
thermore the entries of its generating vector are mutually distinct.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 71 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5.1. M Tensors and Strong M Tensors

M Tensors are the tensor extensions of M matrices. It was introduced in the
2012 arXiv version of the following paper:

[88]. L. Zhang, L. Qi and G. Zhou, “M-tensors and some applications”, SIAM
Journal on Matrix Analysis and Applications 35 (2014) 437-452.

M tensors were further studied in

[89]. W. Ding, L. Qi and Y. Wei, “M-tensors and nonsingular M-tensors”, Linear
Algebra and Its Applications 439 (2013) 3264-3278.

[90]. J. He and T.Z. Huang, “Inequalities for M-tensors”, Journal of Inequality
and applications (2014) 2014:114.

A tensor in Tm,n is called a Z tensor if all of its off-diagonal entries are non-
positive. A Z tensor A is called a M tensor if it can be written as A = cI − B,
where B is a nonnegative tensor and c ≥ ρ(B). It is called a strong M tensor if
furthermore we have c > ρ(B).
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5.2. Even Order Symmetric M Tensors

The following theorem was from [1].

Theorem 5.1 An even order symmetric Z tensor is positive semi-definite if and
only if it is an M tensor. An even order symmetric Z tensor is positive definite if
and only if it is a strong M tensor.

As pointed out in [1], one may modify an algorithm for finding the largest H-
eigenvalue of a nonnegative tensor to find the smallest H-eigenvalue of a Z ten-
sor. Thus, it is not difficult to identify an M tensor or a strong M tensor.

In the following paper, it is shown that the largest H-eigenvalue of a nonnegative
tensor can be found by solving a semi-definite programming problem, which
is in polynomial-time. Hence, the problem for identifying a Z-tensor is an M
tensor or not can be solved in polynomial time.

[91]. S. Hu, G. Li, L. Qi and Y. Song, “Finding the maximum eigenvalue of
essentially nonnegative symmetric tensors via sum of squares programming”,
Journal of Optimization Theory and Applications 158 (2013) 717-738.

Laplacian tensors of uniform hypergraphs are M tensors.
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5.3. Hilbert Tensors

Let A = (ai1···im) ∈ Tm,n. If for all ij ∈ [n] and j ∈ [m], we have

ai1···im =
1

i1 + · · ·+ im −m+ 1
,

then A is called a Hilbert tensor. Hilbert tensors are extensions of Hilbert ma-
trices. They are symmetric tensors. Hilbert matrices are positive definite. In the
following paper, we showed that even order Hilbert tensors are positive definite.

[92]. Y. Song and L. Qi, “Infinite and finite dimensional Hilbert tensors”, Linear
Algebra and Its Applications 451 (2014) 1-14.
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5.4. Cauchy Tensors

Hilbert tensors are Cauchy tensors.

In [94], we extended symmetric Cauchy matrices to symmetric Cauchy tensors,
and gave sufficient and necessary conditions for positive semi-definiteness and
positive definiteness of even order symmetric Cauchy tensors. This work ex-
tends Fielder’s work [13] on symmetric Cauchy matrices in 2010 (note that M.
Fielder was born in 1926!) Hilbert matrices are symmetric Cauchy tensors. In
the following paper, for simplicity, we simply call symmetric Cauchy tensors as
Cauchy tensors.

[93]. M. Fiedler, “Notes on Hilbert and Cauchy matrices”, Linear Algebra and
Its Applications 432 (2010) 351-356.

[94]. H. Chen and L. Qi, “Positive definiteness and semi-definiteness of even
order symmetric Cauchy tensors”, Journal of Industrial Management and Opti-
mization 11 (2015) 1263-1274.
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5.5. Cauchy Tensors

Let vector c = (c1, c2, · · · , cn) ∈ <n. Suppose that a real tensor C = (ci1i2···im)
is defined by

ci1i2···im =
1

ci1 + ci2 + · · ·+ cim
, j ∈ [m], ij ∈ [n].

Then, we say that C is an order m dimension n symmetric Cauchy tensor and
the vector c ∈ Rn is called the generating vector of C.

We should point out that, in this definition, for any m elements ci1, ci2, · · · , cim
in generating vector c, it satisfies

ci1 + ci2 + · · ·+ cim 6= 0,

which implies that ci 6= 0, i ∈ [n].
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5.6. Cauchy Tensors, Hilbert Tensors and Hankel Tensors

Suppose Cauchy tensor C and its generating vector c are defined as above. If

ci1 + ci2 + · · ·+ cim ≡ cj1 + cj2 + · · ·+ cjm

whenever
i1 + i2 + · · ·+ im = j1 + j2 + · · ·+ jm,

then Cauchy tensor C is a Hankel tensor. In general, a symmetric Cauchy tensor
is not a Hankel tensor. We will discuss Hankel tensors more later.

If entries of c are defined such that

ci = i− 1 +
1

m
, i ∈ [n],

then Cauchy tensor C is a Hilbert tensor.
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5.7. Positive Semi-Definiteness and Positive Definiteness of Cauchy
Tensors

The following theorem was proved in [94].

Theorem 5.2 Suppose that the order of a Cauchy tensor is even. Then it is
positive semi-definite if and only if its generating vector c is positive, and it is
positive definite if and only if its generating vector c is positive and the entries
of c are mutually distinct.

Clearly, these conditions are easily checkable. This result extends the result
of Fielder [13]. From this result, we immediately conclude that an even order
Hilbert tensor is positive definite.
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5.8. Checkable Sufficient Conditions

We now have the following checkable sufficient conditions of positive definite-
ness and semi-definiteness for even order symmetric tensors.

• An even order (strictly) diagonally dominated symmetric tensor is positive
semi-definite (definite);

• An even order (strictly) doubly diagonally dominated symmetric tensor is
positive semi-definite (definite);

• An even order symmetric (strong) H+ tensor is positive semi-definite (defi-
nite);

• An even order Hankel tensor is positive semi-definite if its associated Hankel
matrix is positive semi-definite;

• An even order symmetric B0 (B) tensor is positive semi-definite (definite);

• An even order symmetric double B0 (B) tensor is positive semi-definite (def-
inite);

• An even order symmetric quasi-double B0 (B) tensor is positive semi-
definite (definite).

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 79 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5.9. Diagonally Dominated Tensors

A tensor A ∈ Tm,n is called diagonally dominated if for all i ∈ [n],

ai···i ≥ ∆i.

A tensor A ∈ Tm,n is called strictly diagonally dominated if for all i ∈ [n],

ai···i > ∆i.

By Theorem 2.1, we may easily prove the following theorem.

Theorem 5.3 An even order diagonally dominated symmetric tensor is positive
semi-definite. An even order strictly diagonally dominated symmetric tensor is
positive definite.

Clearly, this is an easily checkable sufficient condition.
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5.10. Doubly Diagonally Dominated Tensors

A tensor A ∈ Tm,n is called doubly diagonally dominated if for all i ∈ [n],

ai···i ≥ 0,

and for all i 6= j ∈ [n],
ai···iaj···j ≥ ∆i∆j.

Furthermore, if for all i 6= j ∈ [n], we have

ai···iaj···j > ∆i∆j,

then A is called strictly doubly diagonally dominated. By Theorem ??, we
may easily prove the following theorem.

Theorem 5.4 An even order doubly diagonally dominated symmetric tensor is
positive semi-definite. An even order strictly doubly diagonally dominated sym-
metric tensor is positive definite.

Clearly, this is also an easily checkable condition, and stronger than Theorem
2.2.
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5.11. Symmetric H+ Tensors and Strong H+ Tensors

Discussing with Prof. Li Yaotang, we now further extend M tensors to H+

tensors, which are extensions of H+ matrices.

A tensorA in Tm,n may always be denoted asA = D−B, whereD is a diagonal
tensor consisting of the diagonal part of A, while B consists of the off-diagonal
part ofA. If |D|−|B| is a (strong) M tensor, thenA is called a (strong) H tensor.
If furthermore D ≥ O, then A is called a (strong) H+ tensor. Then we have the
following theorem.

Theorem 5.5 An even order symmetric H+ tensor is positive semi-definite. An
even order symmetric strong H+ tensor is positive definite.

Similar results may be found in the following papers:

[95]. C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li, “Criterions for the positive defi-
niteness of real supersymmetric tensors”, Journal of Computational and Applied
Mathematics 255 (2014) 1-14.

[96]. M.R. Kannan, N. Shaked-Monderer, A. Berman, “Some properties of
strong H-tensors and general H-tensors”, Linear Algebra and its Applications
476 (2015) 42-55.
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5.12. Hankel Tensors

As a natural extension of Hankel matrices, Hankel tensors arise from applica-
tions such as signal processing.
Let A = (ai1···im) ∈ Tm,n. If there is a vector v = (v0, v1, · · · , v(n−1)m)> such
that for i1, · · · , im ∈ [n], we have

ai1···im ≡ vi1+i2+···+im−m, (10)

then we say that A is an mth order Hankel tensor. Clearly, Hankel tensors are
symmetric tensors. Denote the set of all real mth order n-dimensional Hankel
tensors by Hm,n. Then Hm,n is a linear subspace of Sm,n, with dimension (n −
1)m+ 1.

Hankel tensors were introduced by Papy, De Lathauwer and Van Huffel in 2005
in the context of the harmonic retrieval problem, which is at the heart of many
signal processing problems. In 2008, Badeau and Boyer proposed fast higher-
order singular value decomposition (HOSVD) for third order Hankel tensors.

[97]. J.M. Papy, L. De Lauauwer and S. Van Huffel, “Exponential data fitting
using multilinear algebra: The single-channel and multi-channel case”, Numer-
ical Linear Algebra with Applications 12 (2005) 809-826.

[98]. R. Badeau and R. Boyer, “Fast multilinear singular value decomposition
for structured tensors”, SIAM J. Matrix Anal. Appl. 30 (2008) 1008-1021.
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5.13. Strong Hankel Tensors

In the following paper, I studied two subclasses of Hankel tensor: strong Hankel
tensors and complete Hankel tensors. Even order strong Hankel tensors and
complete Hankel tensors are positive semi-definite.

[99]. L. Qi, “Hankel tensors: Associated Hankel matrices and Vandermonde de-
composition”, Communications in Mathematical Sciences 13 (2015) 113-125.

Suppose that A ∈ Hm,n is defined by (13). Let A = (aij) be an d(n−1)m+2
2 e ×

d(n−1)m+2
2 e matrix with aij ≡ vi+j−2, where v

2d (n−1)m
2 e is an additional number

when (n − 1)m is odd. Then A is a Hankel matrix, associated with the Hankel
tensor A. Such an associated Hankel matrix is unique if (n − 1)m is even. If
the Hankel matrix A is positive semi-definite, then we say that A is a strong
Hankel tensor.
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5.14. Generating Functions

Let A be a Hankel tensor defined by (13). Let f(t) be an absolutely integrable
real valued function on the real line (−∞,∞) such that

vk ≡
∫ ∞
−∞

tkf(t)dt, (11)

for k = 0, · · · , (n − 1)m. Then we say that f is a generating function of
the Hankel tensor A. We see that f(t) is also the generating function of the
associated Hankel matrix of A. By the theory of Hankel matrices, f(t) is well-
defined.

Theorem 5.6 A Hankel tensor A has a nonnegative generating function if and
only if it is a strong Hankel tensor. An even order strong Hankel tensor is posi-
tive semi-definite.

As we may check the associated Hankel matrix is positive semi-definite or not,
it is checkable that a Hankel tensor is a strong Hankel tensor or not. This gives
another checkable sufficient condition for positive semi-definite tensors when
the order is even.
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5.15. Vandermonde Decomposition and Complete Hankel Tensors

Suppose that u ∈ <n. If u = (1, u, u2, · · · , un−1)>, then u is called a Vander-
monde vector. If

A =
r∑

k=1

αk (uk)
m , (12)

where αk ∈ <, αk 6= 0, uk = (1, uk, u
2
k, · · · , u

n−1
k )> ∈ <n are Vandermonde

vectors for k = 1, · · · , r, and ui 6= uj for i 6= j, then we say that tensor A has a
Vandermonde decomposition.

Theorem 5.7 Let A ∈ Sm,n. Then A is a Hankel tensor if and only if it has a
Vandermonde decomposition (12).
Suppose thatA has a Vandermonde decomposition (12). Ifm is even and αk > 0
for i ∈ [r], then A is positive semi-definite.

In (12), if αk > 0, k ∈ [r], then we say that A has a positive Vandermonde
decomposition and call A a complete Hankel Tensor. Thus, Theorem 5.7 says
that an even order complete Hankel tensor is positive semi-definite.
A further paper on Hankel tensor is as the following in.

[28]. W. Ding, L. Qi and Y. Wei, “Fast Hankel tensor-vector products and appli-
cation to exponential data fitting”, Numerical Linear Algebra with Applications
22 (2015) 814-832.
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5.16. P and P0 Tensors

P tensors and P0 are extensions of P matrices and P0 matrices respectively. They
were introduced in the following paper.

[100]. Y. Song and L. Qi, “Properties of some classes of structured tensors”,
Journal of Optimization: Theory and Applications 165 (2015) 854-873.

Let A = (ai1···im) ∈ Tm,n. We say that A is
(a) a P0 tensor if for any nonzero vector x in <n, there exists i ∈ [n] such that
xi 6= 0 and

xi
(
Axm−1

)
i
≥ 0;

(b) a P tensor if for any nonzero vector x in <n,

max
i∈[n]

xi
(
Axm−1

)
i
> 0.
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5.17. P and P0 Tensors

The following them was established in [29]. It extends the well-known result in
matrix theory.

Theorem 5.8 Let A ∈ Tm,n be a P (P0) tensor. Then when m is even, all of its
H-eigenvalues and Z-eigenvalues of A are positive (nonnegative). A symmetric
tensor is a P (P0) tensor if and only if it is positive (semi-)definite. There does not
exist an odd order symmetric P tensor. If an odd order nonsymmetric P tensor
exists, then it has no Z-eigenvalues. An odd order P0 tensor has no nonzero
Z-eigenvalues.
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5.18. B and B0 Tensors

In the matrix literature, there is another easily checkable sufficient condition for
positive definite matrices. It is easy to check a given matrix is a B matrix or
not. In the following paper, it was proved that a B matrix is a P matrix. It is
well-known that a symmetric matrix is a P matrix if and only if it is positive
definite. Thus, a symmetric B matrix is positive definite.

[101]. J.M. Peña, “A class of P-matrices with applications to the localization
of the eigenvalues of a real matrix”, SIAM Journal on Matrix Analysis and
Applications 22 (2001) 1027-1037.

P matrices and B matrices were extended to P tensors and B tensors in [100]. It
is easy to check a given tensor is a B tensor or not, while it is not easy to check
a given tensor is a P tensor or not. It was proved there that a symmetric tensor is
a P tensor if and only it is positive definite. However, it was not proved in [100]
if an even order B tensor is a P tensor or not, or if an even order symmetric B
tensor is positive definite or not. As pointed out in [100], an odd order identity
tensor is a B tensor, but not a P tensor. Thus we know that an odd order B tensor
may not be a P tensor.
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5.19. New Technique is Needed

The B tensor condition is not so strict compared with the strongly diagonal
dominated tensor condition if the tensor is not sparse. A tensor in Tm,n is strictly
diagonally dominated tensor if every diagonal entry of that tensor is greater than
the sum of the absolute values of all the off-diagonal entries in the same row.
For each row, there are nm−1− 1 such off-diagonal entries. Thus, this condition
is quite strict when n and m are big and the tensor is not sparse. A tensor in
Tm,n is a B tensor if for every row of the tensor, the sum of all the entries in
that row is positive, and each off-diagonal entry is less than the average value of
the entries in the same row. An initial numerical experiment indicates that for
m = 4 and n = 2, a symmetric B tensor is positive definite. Thus, it is possible
that an even order symmetric B tensor is positive definite. If this is true, we will
have an easily checkable, not very strict, sufficient condition for positive definite
tensors.

However, the technique in [101] cannot be extended to the tensor case. It was
proved in [101] that the determinant of every principal submatrix of a B matrix
is positive. Thus, a B matrix is a P matrix. As we know, the determinant of
every principal sub-tensor of a symmetric positive definite tensor is positive, but
this is only a necessary, not a sufficient condition for symmetric positive definite
tensors. Hence, the technique in [101] cannot be extended to the tensor case.
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5.20. New Technique

In the following paper, we use a new technique to prove that an even order sym-
metric B tensor is positive definite. We show that a symmetric B tensor can al-
ways be decomposed to the sum of a strictly diagonally dominated symmetric M
tensor and several positive multiples of partially all one tensors, and a symmet-
ric B0 tensor can always be decomposed to the sum of a diagonally dominated
symmetric M tensor and several positive multiples of partially all one tensors.
Even order partially all one tensors are positive semi-definite. As stated before,
an even order diagonally dominated symmetric tensor is positive semi-definite,
and an even order strictly diagonally dominated symmetric tensor is positive
definite. Therefore, when the order is even, these imply that the corresponding
symmetric B tensor is positive definite, and the corresponding symmetric B0

tensor is positive semi-definite. Hence, this gives an easily checkable, not very
strict, sufficient condition for positive definite and semi-definite tensors.

[102]. L. Qi and Y. Song, “An even order symmetric B tensor is positive defi-
nite”, Linear Algebra and Its Applications 457 (2014) 303-312.
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5.21. B and B0 Tensors

Let B = (bi1···im) ∈ Tm,n. We say that B is a B tensor if for all i ∈ [n]

n∑
i2,··· ,im=1

bii2i3···im > 0

and

1

nm−1

 n∑
i2,··· ,im=1

bii2i3···im

 > bij2j3···jm for all (j2, j3, · · · , jm) 6= (i, i, · · · , i).

We say that B is a B0 tensor if for all i ∈ [n]

n∑
i2,··· ,im=1

bii2i3···im ≥ 0

and

1

nm−1

 n∑
i2,··· ,im=1

bii2i3···im

 ≥ bij2j3···jm for all (j2, j3, · · · , jm) 6= (i, i, · · · , i).
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5.22. Partially All One Tensors

A tensor C ∈ Tm,r is called a principal sub-tensor of a tensor A = (ai1···im) ∈
Tm,n (1 ≤ r ≤ n) if there is a set J that composed of r elements in [n] such that

C = (ai1···im), for all i1, i2, · · · , im ∈ J.

This concept was first introduced and used in [14] for symmetric tensor. We
denote byAJr the principal sub-tensor of a tensorA ∈ Tm,n such that the entries
of AJr are indexed by J ⊂ [n] with |J | = r (1 ≤ r ≤ n).

Suppose thatA ∈ Sm,n has a principal sub-tensorAJr with J ⊂ [n] with |J | = r
(1 ≤ r ≤ n) such that all the entries of AJr are one, and all the other entries of
A are zero. Then A is called a partially all one tensor, and denoted by EJ . If
J = [n], then we denote EJ simply by E and call it an all one tensor. An even
order partially all one tensor is positive semi-definite. In fact, when m is even,
if we denote by xJ the r-dimensional sub-vector of a vector x ∈ <n, with the
components of xJ indexed by J , then for any x ∈ <n, we have

EJxm =
(∑

{xj : j ∈ J}
)m
≥ 0.
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5.23. An Even Order Symmetric B Tensor is Positive Definite

Theorem 5.9 Suppose that B = (bi1···im) ∈ Sm,n is a symmetric B0 tensor. Then
either B is a diagonally dominated symmetric M tensor itself, or we have

B =M+
s∑

k=1

hkEJk, (13)

whereM is a diagonally dominated symmetric M tensor, s is a positive integer,
hk > 0 and Jk ⊂ [n], for k = 1, · · · , s, and Jk ∩ Jl = ∅, for k 6= l, k and
l = 1, · · · , s when s > 1. If furthermore B is a B tensor, then either B is a
strictly diagonally dominated symmetric M tensor itself, or we have (13) withM
as a strictly diagonally dominated symmetric M tensor. An even order symmetric
B0 tensor is positive semi-definite. An even order symmetric B tensor is positive
definite.

Three further papers on P and B tensors:

[103]. P. Yuan and L. You, “Some remarks on P, P0, B and B0 tensors”, Linear
Algebra and Its Applications 459 (2015) 511-521.

[104]. C. Li and Y. Li, “Double B-tensors and quasi-double B-tensors”, Linear
Algebra and Its Applications 466 (2015) 343-356.

[105]. C. Li, L. Qi and Y. Li, “MB-tensors and MB0-tensors”, Linear Algebra
and Its Applications 484 (2015) 141-153.
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5.24. SOS Tensors

SOS tensors were introduced in the following two papers.

[106]. S. Hu, G. Li and L. Qi, “A tensor analogy of Yuan’s alternative theo-
rem and polynomial optimization with sign structure”, to appear in: Journal of
Optimization Theory and Applications.

[107]. Z. Luo, L. Qi and Y. Ye, “Linear operators and positive semidefiniteness
of symmetric tensor spaces”, Science China Mathematics 58 (2015) 197-212.

A symmetric tensor A ∈ Sm,n uniquely define a homogeneous polynomial of n
variable and degree m:

f(x) = Axm.
On the other hand, a homogeneous polynomial f(x) of n variable and degreem,
also uniquely determines a symmetric tensor A in Sm,n. Let m = 2k be even.
If f(x) can be written as the sum of squares of homogeneous polynomials of
degree k, then f is called an SOS (sum of squares) polynomial, and A is called
an SOS tensor.
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5.25. Properties of SOS tensors

Clearly, an SOS tensor is a PSD tensor, but not vice versa. The problem for
determining a given general even order symmetric tensor A is PSD or not is
NP-hard if the order is greater than 2. On the other hand, the problem for
determining a given general even order symmetric tensor A is SOS or not is
polynomial time solvable. It can be solved by solving a semi-definite linear
programming problem. See the following two papers.

[108]. J.B. Lasserre, “Global optimization with polynomials and the problem of
moments”, SIAM Journal on Optimization 11 (2001) 796-817.

[109]. M. Laurent, “Sums of squares, moment matrices and optimization over
polynomials”, Emerging Applications of Algebraic Geometry, Vol. 149 of IMA
Volumes in Mathematics and its Applications, M. Putinar and S. Sullivant eds.,
Springer, (2009) pp. 157-270.

Thus, SOS tensors are much easier to be identified compared with PSD tensors.
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5.26. SOS Tensors and SOS Rank

In [110], we show that a complete Hankel tensor is a strong Hankel tensor, and
an even order strong Hankel tensor is an SOS tensor. We also show that there
are SOS Hankel tensors, which are not strong Hankel tensors. In [111], we
show that an even order positive Cauchy tensor is an SOS tensor. In [112], we
show that all the other even order symmetric PSD tensor classes, with easily
checkable conditions, such as diagonally dominated tensors, B0 tensors, doubly
B0 tensors, qausi-B0 tensors, MB0 tensors, H+ tensors, are SOS tensors.

[110]. G. Li, L. Qi and Y. Xu, “SOS Hankel Tensors: Theory and Application”,
October 2014. arXiv:1410.6989.

[111]. H. Chen, G. Li and L. Qi, “Further results on Cauchy tensors and Hankel
tensors”, Applied Mathematics and Computation 275 (2016) 50-62.

[112]. H. Chen, G. Li and L. Qi, “SOS tensor decomposition: Theory and
applications”, Communications in Mathematical Sciences 14 (2016) 2073-2100.
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5.27. A Question

An even order symmetric tensor is PSD if and only if its smallest H-(Z-
)eigenvalue is nonnegative. For those easily checkable classes of PSD tensors,
can we find their smallest H-(Z-)eigenvalues in polynomial time? For exam-
ple, can we construct an efficient, polynomial-time algorithm to compute the
smallest H-(Z-)eigenvalue of an even order symmetric B (B0) tensor?

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 98 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5.28. PNS Tensors and PNS-Free Zone

It was shown by young Hilbert in [113] that for homogeneous polynomial, only
in the following three cases, a PSD polynomial definitely is an SOS polynomial:
1) n = 2; 2) m = 2; 3) m = 4 and n = 3. For tensors, the second case
corresponds to the symmetric matrices, i.e., a PSD symmetric matrix is always
an SOS matrix. Hilbert proved that in all the other possible combinations of
m = 2k and n, there are non-SOS PSD homogeneous polynomials [114].

[113]. D. Hilbert, “Über die Darstellung definiter Formen als Summe von For-
menquadraten”, Mathematical Annals, 32 (1888) 342-350.

[114]. B. Reznick, “Some concrete aspects of Hilbert’s 17th problem”, Contem-
porary Mathematics 253 (2000) 251-272.
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5.29. PNS Tensors

However, Hilbert did not give an explicit example of non-SOS PSD (PNS) ho-
mogeneous polynomial. The first PNS homogeneous polynomial was given by
Motzkin [115]:

fM(x) = x6
3 + x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3.

By the Arithmetic-Geometric inequality, we see that it is a PSD polynomial. But
it is not an SOS polynomial [114]. The other two PNS homogeneous polynomi-
als with small m and n were given by Choi and Lam [116]

fCL1(x) = x4
4 + x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3 − 4x1x2x3x4

and
fCL2(x) = x4

1x
2
2 + x4

2x
2
3 + x4

3x
2
1 − 3x2

1x
2
2x

2
3.

Denote the set of all SOS tensors in Sm,n by SOSm,n. Then it is also a closed con-
vex cone. Thus, SOSm,2 = PSDm,2, SOS2,n = PSD2,n and SOS4,3 = PSD4,3.
But for other m = 2k ≥ 4, n ≥ 3, we have SOSm,n ( PSDm,n.

[115]. T.S. Motzkin, “The arithmetic-geometric inequality”, In: Inequalities, O.
Shisha ed., Academic Press, New York, (1967) pp. 205-224.

[116]. M.D. Choi and T.Y. Lam, “Extremal positive semidefinite forms”, Math-
ematische Annalen 231 (1977) 1-18.
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5.30. The Hilbert-Hankel Problem

In [110], we raised a question, is a PSD Hankel tensor always an SOS tensor?
If the answer to this question is “yes”, then the problem for determining a given
even order Hankel tensor is PSD or not is polynomial time solvable. Hence,
this problem has important practical significance. On the other hand, theoreti-
cally, this is a Hilbert problem under the Hankel constraint. We discussed with
the experts of the Hilbert problem: Bruce Reznick and Man-Duen Choi. The
Hilbert-Hankel problem is a new open problem.

In the following papers, we consider two cases with the lowest dimension that
there may be PNS tensors, such as the Motzkin tensor and the Choi-Lam tensor,
in the general case (without the Hankel constraint), i.e., m = 6 and n = 3;
m = n = 4.

[117]. G. Li, L. Qi and Q. Wang, “Are there sixth order three dimensional
Hankel tensors?”, November 2014. arXiv:1411.2368.

[118]. Y. Chen, L. Qi and Q. Wang, “Positive semi-definiteness and sum-of-
squares property of fourth order four dimensional Hankel tensors”, Journal of
Computational and Applied Mathematics 302 (2016) 356-368.

We partially proved that in some subcases, there are no PNS tensors.
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5.31. Generalized Anti-Circulant Tensors

In the following paper, we considered generalized anti-circulant tensors, which
are special Hankel tensors.

[119]. G. Li, L. Qi and Q. Wang, “Positive semi-definiteness of generalized
anti-circular tensors”, Journal of Computational and Applied Mathematics 302
(2016) 356-368.

A Hankel tensor A = (ai1···im) is generated by a generating vector v =
(v0, · · · , v(n−1)m)>, with

ai1···im = vi1+···+im−m.

If
vi = vi+r

for i = 0, · · · , (n − 1)m − r, with r = n, then A is called an anti-circulant
tensor, which is a generalization of an anti-circulant matrix in the matrix theory.
We further extend this concept to generalized anti-circulant tensors, by allowing
r ≤ n. We show that for the cases that GCD(m, r) = 1, GCD(m, r) = 2 and
some other cases, including the matrix case that m = 2, when r is odd, A is
PSD if and only if v0 = · · · = vr ≥ 0; and when r is even, A is PSD if and only
if v0 = v2 = · · · = vr−2, v1 = v3 = · · · = vr−1 and v0 ≥ |v1|; and in all these
cases, A is PSD if and only if it is a strong Hankel tensor, thus an SOS Hankel
tensor.
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5.32. Strongly Symmetric Circulant Tensors

In the following paper, we considered three dimensional strongly symmetric
circulant tensors. In some cases, we show that it is PNS-free. In the other cases,
numerical tests detect that it is PNS free.

[120]. L. Qi, Y. Chen and Q. Wang, “Three dimensional strongly symmetric
circulant tensors”, Linear Algebra and Its Applications 482 (2015) 207-220.
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6. Spectral Graph Theory
Spectral graph theory is a well-studied and highly applicable subject. It studies
the connection between properties of a graph, and the eigenvalues of a matrix
associated with that graph. Comparing with the research of spectral graph the-
ory, the research on spectral hypergraph theory is still on its beginning stage.
Recently, due to the development of spectral theory of tensors, spectral hyper-
graph theory has also made its first stage progress. Several papers appeared on
eigenvalues of the adjacency tensor and the Laplacian tensor of a uniform hy-
pergraph. Three international workshops on Spectral Hypergraph Theory have
been held at Fuzhou, Xining and Harbin in 2013, 2015 and 2016, respectively.
A number of papers on spectral hypergraph theory appeared.
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6.1. Spectral Graph Theory

On the website of SGT - Spectral Graph Theory, one may find 2154 researchers
on spectral graph theory. This shows the popularity of this subject.

Here are some books on spectral graph theory:

[1]. D.M. Cvetković, M. Doob, I. Gutman and A. Torgas̈ev, Recent Results in
the Theory of Graph Spectra, North Holland, Amsterdam, 1988.

[2]. F.R.K. Chung, Spectral Graph Theory, Am. Math. Soc., Providence, RI,
1997.

[3]. D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and
Application, Academic Press, 1980.376 (2004) 173-186.

[4]. A.E. Brouwer and W.H. Haemers, Spectra of Grapha, Springer, 2011.

[5]. X.L. Li, Y.T. Shi and I. Gutman, Graph Energy, Springer, 2012.

The research on spectral graph theory in China is quite active. There are a good
number of active Chinese researchers in spectral graph theory.
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6.2. Hyperhraph

We may denote a hypergraph by G = (V,E), where V = {1, 2, · · · , n} is the
vertex set, E = {e1, e2, · · · , em} is the edge set, ep ⊂ V for p = 1, · · · ,m. If
|ep| = k for p = 1, · · · ,m, and k ≥ 2, then G is called a uniform hypergraph,
or a k-graph. If k = 2, then G is an ordinary graph.

A book on hypergraph is:

Two books on hypergraph are:

[6]. C. Berge, Hypergraphs, Combinatorics of Finite Sets, 3rd edn., North-
Holland, 1989.

[7]. A. Bretto, Hypergraph Theory: An Introduction, Springer, 2013.
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6.3. Spectral Hypergraph Theory via Laplacian Matrices

The early works on spectral hypergraph theory are via Laplacian matrices. Here
are some papers we found on this approach in the literature.

[8]. M. Bolla, “Spectra, Euclidean representations and clusterings of hyper-
graphs”, Discrete Mathematics, 117 (1993) 19-39.

[9]. F.R.K. Chung, “The Laplacian of a Hypergraph”, in Expanding Graphs,
DIMACS Ser. Disc. Math. Theoret. Comput. Sci. 10, Am. Math. Soc.,
Providence, RI, 1993, pp. 21-36.

[10]. K. Feng and W. Li, “Spectra of hypergraphs and applications”, J. Number
Theory, 60 (1996) 1-22.

[11]. J.A. Rodrı́guez, “On the Laplacian eigenvalues and metric parameters of
hypergraphs”, Linear Multilinear Algebra, 50 (2002), 1-14.

[12]. J.A. Rodrı́guez, “On the Laplacian spectrum and walk-regular hyper-
graphs”, Linear Multilinear Algebra, 51 (2003), 285-297.

[13]. J.A. Rodrı́guez, “Laplacian eigenvalues and partition problems in hyper-
graphs”, Appl. Math. Lett. 22 (2009) 916-921.

[14]. L. Lu and X. Peng, “High-ordered random walks and generalized Lapla-
cians on hypergraphs”, in: Proceedings of Algorithms and Models for the Web-
Graph: Eighth International Workshop, WAW2011, Atlanta, GA, USA, May
27-29, 2011.

[15]. L. Lu and X. Peng, “Loose Laplacian spectra of random hypergraphs”,
Random Structures and Algorithms, 41 (2012), 521-545.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 107 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6.4. Spectral Hypergraph Theory via Tensors I

In fact, the following early work of spectral hypergraph theory used the adja-
cency tensor and their Z-eigenvalues implicitly:

[16]. J. Friedman and A. Wigderson, “On the second eigenvalue of hyper-
graphs”, Combinatorica 15 (1995) 43-965.

Then, in the early stage of spectral theory of tensors, Lim advocated to study
spectral hypergraph theory via tensors:

[17]. L.H. Lim, “Eigenvalues of tensors and some very basic spectral hyper-
graph theory”, Matrix Computations and Scientific Computing Seminar, April
16, 2008,
http://www.stat.uchicago.edu/ lekheng/work/mcsc2.pdf

In 2009, the following paper by Italian researchers attracted people to study
spectral hypergraph theory via tensors:

[18]. S.R. Bulò and M. Pelillo, “New bounds on the clique number of graphs
based on spectral hypergraph theory”, in: T. Stützle ed., Learning and Intelligent
Optimization, Springer Verlag, Berlin, (2009) pp. 45-48.
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6.5. Spectral Hypergraph Theory via Tensors II

In 2012, the following two papers were published:

[19]. J. Cooper and A. Dutle, “Spectra of uniform hypergraphs”, Linear Algebra
and Its Applications, 436 (2012) 3268-3292.

[20]. S. Hu and L. Qi, “Algebraic connectivity of an even uniform hypergraph”,
Journal of Combinatorial Optimization, 24 (2012) 564-579.
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6.6. Spectral Hypergraph Theory via Tensors III

In 2013, the following six papers were published:

[21]. G. Li, L. Qi and G. Yu, “The Z-eigenvalues of a symmetric tensor and
its application to spectral hypergraph theory”, Numerical Linear Algebra with
Applications, 20 (2013) 1001-1029.

[22]. J. Xie and A. Chang, “On the H-eigenvalues of the signless Laplacian
tensor for an even uniform hypergraph”, Frontiers of Mathematics in China, 8
(2013) 107-128.

[23]. J. Xie and A. Chang, “On the Z-eigenvalues of the adjacency tensors for
uniform hypergraphs”, Linear Algebra and Its Applications, 430 (2013) 2195-
2204.

[24]. J. Xie and A. Chang, “On the Z-eigenvalues of the signless Laplacian
tensor for an even uniform hypergraph”, Numerical Linear Algebra with Appli-
cations, 20 (2013) 1030-1045.

[25]. S. Hu, L. Qi and J. Shao, “Cored hypergraphs, power hypergraphs and
their Laplacian eigenvalues”, Linear Algebra and Its Applications, 439 (2013)
2980-2998.

[26]. K. Pearson and T. Zhang, “Eigenvalues on the adjacency tensor of products
of hypergraphs”, International Journal on Contemporary Mathematical Sciences
8 (2013) 151-158.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 110 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6.7. Spectral Hypergraph Theory via Tensors IV

In 2014, the following eight papers were published:

[27]. L. Qi, J. Shao and Q. Wang, “Regular uniform hypergraphs, s-cycles,
s-paths and their largest Laplacian H-eigenvalues”, Linear Algebra and Its Ap-
plications, 443 (2014) 215-227.

[28]. S. Hu and L. Qi, “The eigenvectors associated with the zero eigenvalues of
the Laplacian and signless Laplacian tensors of a uniform hypergraph”, Discrete
Applied Mathematics, 169 (2014) 140-151.

[29]. L. Qi, “H+-eigenvalues of Laplacian and signless Laplacian tensors”,
Communications in Mathematical Sciences, 12 (2014) 1045-1064.

[30]. C. Bu, J. Zhou and Y. Wei, “E-cospectral hypergraphs and some hyper-
graphs determined by their spectra”, Linear Algebra and Its Applications 459
(2014) 397-403.

[31]. V. Nikiforov, “Analytic methods for uniform hypergraphs”, Linear Algebra
and Its Applications 457 (2014) 455-535.

[32]. V. Nikiforov, “Some extremal problems for hereditary properties of
graphs”, The Electronic Journal of Combinatorics 21 (2014) P1.17.

[33]. K. Pearson and T. Zhang, “On spectral hypergraph theory of the adjacency
tensor”, Graphs and Combinatorics 30 (2014) 1233-1248.

[34]. J. Zhou, L. Sun, W.Wang and C. Bu, “Some spectral properties of uniform
hypergraphs”, The Electronic Journal of Combinatorics 21 (2014) P4.24.
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6.8. Spectral Hypergraph Theory via Tensors V

[35]. D. Ghoshdastidar, A. Dukkipati, “Consistency of spectral partitioning of
uniform hypergraphs under planted partition model”, Advances in Neural Infor-
mation Processing Systems 27 (NIPS 2014).
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6.9. Spectral Hypergraph Theory via Tensors VI

In 2015, the following twelve papers were published:

[36]. J. Cooper and A. Dutle, “Computing hypermatrix spectra with the Poisson
product formula”, Linear and Multilinear Algebra 63 (2015) 956-970.

[37]. R. Cui, W. Li and M. Ng, “Primitive tensors and directed hypergraphs”,
Linear Algebra and Its Applications 471 (2015) 96-108.

[38]. S. Hu and L. Qi, “The Laplacian of a uniform hypergraph”, Journal of
Combinatorial Optimization 29 (2015) 331-366.

[39]. S. Hu, L. Qi and J. Xie, “The largest Laplacian and signless Laplacian
H-eigenvalues of a uniform hypergraph”, Linear Algebra and Its Applications
469 (2015) 1-27.

[40]. L. Kang, V. Nikiforov and X. Yuan, “The p-spectral radius of k-partite and
k-chromatic uniform hypergraphs”, Linear Algebra and Its Applications 478
(2015) 81-107.

[41]. M. Khan and Y. Fan, “On the spectral radius of a class of non-odd-bipartite
even uniform hypergraphs”, Linear Algebra and Its Applications 480 (2015) 93-
106.

[42]. K. Pearson, “Spectral hypergraph theory of the adjacency hypermatrix and
matroids”, Linear Algebra and Its Applications 465 (2015) 176-187.

[43]. K. Pearson and T. Zhang, “The Laplacian tensor of a multi-hypergraph”,
Discrete Mathematics 338 (2015) 972-982.
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6.10. Spectral Hypergraph Theory via Tensors VII

[44]. J. Shao, L. Qi and S. Hu, “Some new trace formulas of tensors with ap-
plications in spectral hypergraph theory”, Linear and Multilinear Algebra 63
(2015) 971-992.

[45]. J. Xie and L. Qi, “The clique and coclique numbers’ bounds based on
the H-eigenvalues of uniform hypergraphs”, International Journal of Numerical
Analysis & Modeling 12 (2015) 318-327.

[46]. X. Yuan, M. Zhang and M. Lu, “Some bounds on the eigenvalues of
uniform hypergraphs”, Linear Algebra and Its Applications 484 (2015) 540-
549.

[47]. D. Ghoshdastidar and A. Dukkipati, “A Provable Generalized Ten-
sor Spectral Method for Uniform Hypergraph Partitioning”, Proceedings of
the 32nd International Conference on Machine Learning, Lille, France, 2015.
JMLR: W&CP vol. 37.
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6.11. Spectral Hypergraph Theory via Tensors VIII

In 2016, the following eighteen papers were published:

[48]. Z. Chen and L. Qi, “Circulant tensors with applications to spectral hy-
pergraph theory and stochastic process”, Journal of Industrial and Management
Optimization 12 (2016) 1227-1247.

[49]. M. Khan, Y. Fan and Y. Tan, “The H-spectra of a class of generalized
power hypergraphs”, Discrete Mathematics 339 (2016) 1682-1689.

[50]. J. Xie and L. Qi, “Spectral directed hypergraph theoy via tensors”, Linear
and Multilinear Algebra 64 (2016) 780-794.

[51]. X. Yuan, L. Qi and J. Shao, “The proof of a conjecture on largest Laplacian
and signless Laplacian H-eigenvalues of uniform hypergraphs”, Linear Algebra
and Its Applications 490 (2016) 18-30.

[52]. X. Yuan, J. Shao and H. Shan, “Ordering of some uniform supertrees with
larger spectral radii”, Linear Algebra and Its Applications 495 (2016) 206-222.

[53]. C. Bu, Y. Fan and J. Zhou, “Laplacian and signless Laplacian Z-
eigenvalues of uniform hypergraphs”, Frontiers of Mathematics in China 11
(2016) 511-520.

[54]. H. Li, J. Shao and L. Qi, “The extremal spectral radii of k-uniform su-
pertrees”, Journal of Combinatorial Optimization 32 (2016) 741-764.
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6.12. Spectral Hypergraph Theory via Tensors IX

[55]. J. Shao, H. Shan and B. Wu, “Some spectral properties and characteriza-
tions of connected odd-bipartite uniform hypergraphs”, Linear and Multilinear
Algebra 63 (2016) 2359-2372.

[56]. J. Yue, L. Zhang and M. Lu, “The largest adjacency, signless Laplacian,
and Laplacian H-eigenvalues of loose paths”, Frontiers of Mathematics in China
11 (2016) 1-13.

[57]. Y. Fan, Y. Tan, X. Peng and A. Liu, “Maximizing spectral radii of uni-
form hypergraphs with few edges”, Discussiones Mathematicae Graph Theory
36 (2016) 845-856.

[58]. M. Khan, Y. Fan and Y. Tan, “The H-spectra of a class of generalized
power hypergraphs”, Discrete Mathematics 339 (2016) 1682-1689.

[59]. L. Lu and S. Man, “Connected hypergraphs with small spectral radius”,
Linear Algebra and Its Applications 509 (2016) 206-227.

[60]. X. Yuan, L. Qi and J. Shao, “The proof of a conjecture on largest Laplacian
and signless Laplacian H-eigenvalues of uniform hypergraphs”, Linear Algebra
and Its Applications 490 (2016) 18-30.

[61]. W. Li, A Chang and J Cooper, “Analytic connectivity of k-uniform hyper-
graphs”, Linear and Multilinear Algebra.
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6.13. Spectral Hypergraph Theory via Tensors X

[62]. A Banerjee, A Char and B Mondal, “Spectra of general hypergraphs”,
Linear Algebra and Its Applications 518 (2017) 14-30.

[63]. J. Chang, Y. Chen and L. Qi, “Computing eigenvalues of large scale sparse
tensors arising from a hypergraph”, SIAM Journal on Scientific Computing 36
(2016) A3618-A3643.

[64]. H. Lin, B. Mo, B. Zhou and W. Weng, “Sharp bounds for ordinary and
signless Laplacian spectral radii of uniform hypergraphs”, Applied Mathemati-
cal Computation 285 (2016) 217-227.

[65]. H. Lin, B. Zhou and B. Mo, “Upper bounds for h- and z-spectra radii of
uniform hypergraphs”, Linear Algebra and Its Applications 510 (2016) 205-221.
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6.14. Laplacian Tensors and Signless Laplacian Tensors

A uniform hypergraph is also called a k-graph. Let G = (V,E) be a k-graph,
where V = {1, 2, · · · , n} is the vertex set, E = {e1, e2, · · · , em} is the edge
set, ep ⊂ V and |ep| = k for p = 1, · · · ,m, and k ≥ 2. If k = 2, then G is an
ordinary graph. We assume that ep 6= eq if p 6= q.

The adjacency tensorA = A(G) ofG, is a kth order n-dimensional symmetric
tensor, with A = (ai1i2···ik), where ai1i2···ik = 1

(k−1)! if (i1, i2, · · · , ik) ∈ E, and 0

otherwise. Thus, ai1i2···ik = 0 if two of its indices are the same.

For i ∈ V , its degree d(i) is defined as d(i) = |{ep : i ∈ ep ∈ E}|. We assume
that every vertex has at least one edge. Thus, d(i) > 0 for all i. The degree
tensor D = D(G) of G, is a kth order n-dimensional diagonal tensor, with its
ith diagonal element as d(i).

The Laplacian tensor L of G is defined by D − A. The signless Laplacian
tensor Q of G is defined by D +A.

Adjacency tensors, degree tensors, Laplacian tensors and signless Laplacian ten-
sors are real symmetric tensors. Laplacian tensors are symmetric M tensors.
Laplacian tensors and signless Laplacian tensors have H-eigenvalues. Even or-
der Laplacian tensors and signless Laplacian tensors are positive semi-definite.
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7. Application in Physics
Recently, European physicists have applied tensor eigenvalues, positive semi-
definite tensors and copositive tensors to the study of quantum spin states, quan-
tum field theory, liquid crystal and super-gravitation:

[H]. F. Bohnet-Waldraff, D. Braun and O. Giraud, “Tensor eigenvalues and en-
tanglement of symmetric states”, Physical Review A 94 (2016) 042324.

[I]. K. Kannike, “Vacuum stability of a general scalar potential of a few fields”,
The European Physical Journal C 76 (2016) 324.

[J]. E. G. Virga, “Octupolar order in two dimensions”, The European Physical
Journal E 38 (2015) 63.

[K]. G. Gaeta and E.G. Virga, “Octupolar order in three dimensions”, The Eu-
ropean Physical Journal E 39 (2016) 113.

[L]. D. Rathlev, “De-Sitter-Vakua in Supergravitationsmodellen”, Master The-
sis, Faculty of Physics, University of Göttingen, Germany, 2012
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7.1. Collaboration

After seeing these, we explored these research topics, and conducted some joint
works with them:

[M]. L. Qi, G. Zhang, D. Braun, F. Bohnet-Waldraff and O. Giraud, “Regularly
decomposable tensors and classical spin states”, to appear in: Communications
in Mathematical Sciences.

[N]. Y. Chen, L. Qi and E.G. Virga, “Octupolar tensors for liquid crystals”, April
2017. arXiv:1701.06761.

[O]. Y. Chen, A. Jákli and L. Qi, “Spectral analysis of piezoelectric tensors”,
March 2017, arXiv:1703.07937.
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7.2. Notation in Quantum Mechanics

Quantum mechanics is a mathematical framework for the development of the-
ories describing physical systems (in molecular or atomic scale). The modern
form of quantum mechanics was formalized by Paul Dirac and John von Neu-
mann in 1930s. Quantum mechanics is, as yet, the most accurate and complete
description of the world known.
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7.3. States

Associated to any isolated physical system there is a Hilbert space. The nor-
malized column vectors in the Hilbert space are called states of the physical
system. The physical system at time instant t is completely described by its
states at time instant t. In quantum mechanics, a state is conventionally denoted
by Dirac ket, like |φ〉; its dual (complex conjugate transpose) state is denoted
〈ψ|. For example, given

|φ〉 =
1√
2

(
1

i

)
,

we have
〈ψ| = 1√

2
(1,−i) .

We use 〈φ|ψ〉 to denote inner product. Thus, we always have

‖|φ〉‖2 ≡ 〈φ|φ〉 = 1.
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7.4. The Quantum Entanglement Problem

A general n-partite state (composite state) |Ψ〉 of a composite quantum system
can be regarded as an element in a Hilbert tensor product space H = ⊗nk=1Hk,
where the dimension ofHk is dk for k = 1, · · · , n.

If d = d1 = . . . = dn, then the state |Ψ〉 is called a symmetric (multipartite)
state.

A separable (Hartree) n-partite state |φ〉 can be described by |φ〉 = ⊗nk=1|φ(k)〉
with |φ(k)〉 ∈ Hk.

A composite state which is not separable, is called entangled. An entangled
state |Ψ〉 can be expressed as a weighted sum of some separable states, satisfying
〈Ψ|Ψ〉 = 1.

The quantum entanglement problem is now regarded as a central problem in
quantum information theory.
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7.5. Our Paper

In March 2012, our group explored the relation between quantum information
theory and the spectral theory of tensors. We found a close link between the
quantum entanglement problem and Z-eigenvalues of nonnegative tensors. We
wrote the following paper [1]. After almost four years, this paper was eventually
published in a physics journal and got attention of physicists.

[1]. S. Hu, L. Qi and G. Zhang, “Computing the geometric measure of entan-
glement of multipartite pure states by means of non-negative tensors”, Physical
Review A 93 (2016) 012304.
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7.6. The Paper of Bohnet-Waldraff, Braun and Giraud I

We now see the following paper:

[2]. F. Bohnet-Waldraff, D. Braun and O. Giraud, “Tensor eigenvalues and en-
tanglement of symmetric states”, Physical Review A 94 (2016) 042324.

Bohnet-Waldraff, Braun and Giraud wrote

“But the relevance of the spectral theory of tensors for the separability (or clas-
sicality) problem has just recently attracted some attention in the quantum in-
formation community. For example, in [25] (our paper [1]) it was shown that
for pure states the largest tensor eigenvalue is equal to the geometric measure of
entanglement i.e., the maximal overlap of the state with a pure separable state.
This entanglement measure is in fact essentially equivalent to finding the best
rank-one approximation of the tensor. Therefore, largest tensor eigenvalue is di-
rectly related to the entanglement of a state. In this paper, we will explore a new
connection, which relates the smallest tensor eigenvalue to the entanglement of
a pure or mixed state. This originates in the fact that the entanglement of a state
is related to the positive-definiteness of a tensor, which in turn is linked to the
sign of its smallest tensor eigenvalue.”

Prof. Daniel Braun is a Professor at Institute of Physics, University of Tübingen,
Germany. Fabian Bohnet-Waldraff is his Ph.D. student. Dr. Olivier Giraud, a re-
searcher at Laboratory of Theoretical Physics and Statistical Models, University
of Paris-Sud, France.

Section III of [2] is “Tensor Eigenvalues”.
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7.7. Collaboration

I communicated with Daniel, and had intensive discussion on this topic. This
resulted our collaboration.

[3]. L, Qi, G. Zhang, D. Braun, F. Bohnet-Waldraff and and O. Giraud, “Regu-
larly decomposable tensors and classical spin states”, to appear in: Communi-
cations in Mathematical Sciences.

Here I summarize the content of our collaboration.
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7.8. Bosons and Fermions

In quantum mechanics, as classified by Paul Dirac, there are two classes of
particles, bosons and fermions. Bosons, including elementary particles such as
photons, gluons, W and Z bosons, Higgs bosons, as well as composite particles
such as mesons and stable nuclei of even mass number such as deuterium, follow
Bose-Einstein statistics. Fermions, including electrons, quarks and leptons, as
well as any composite particle made of an odd number of these, such as protons,
baryons and many atoms and nuclei, follow Fermi-Dirac statistics.

According to the spin-statistics theorem of Wolfgang Pauli, particles with inte-
ger spin are bosons, while particles with half-integer spin are fermions. Thus,
a spin-j state corresponds a boson if j is a positive integer, and corresponds a
fermion if j is a positive half-integer.

For arbitrary pure spin states, a geometrical representation was developed by
Ettore Majorana: a spin-j state is visualized as N = 2j points on a unit sphere,
called the Bloch sphere.
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7.9. Tensor Representation of Spin States

In 2015, Giraud, Braun, Baguette, Bastin and Martin [38] proposed a tensor
representation for spin states. The tensor representation of a spin-j state is a
symmetric tensor of order N = 2j and dimension 4. Thus, a boson corresponds
an even order four dimensional tensor, while a fermion corresponds an odd order
four dimensional tensor.

[4]. O. Giraud, D. Braun, D. Baguette, T. Bastin and J. Martin, “Tensor repre-
sentation of spin states”, Physical Review Letters 114 (2015) 080401.

Baguette, Bastin and Martin are Belgian physicists.
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7.10. Regularly Decomposable Tensors

In 2016, Bohnet-Waldraff, Braun and Giraud [2] further studied the tensor rep-
resentation of spin states. They showed that when j is an integer, i.e., N is
an even number, if a spin-j state is classical, then its representative tensor is
positive semi-definite (PSD) in the sense of Qi [1].

In [3], Braun, Qi, Zhang, Bohnet-Waldraff and Giraud introduced regularly de-
composable tensors, and showed that a spin state is classical if and only if it is
a regularly decomposable tensor. In the even order case, a regularly decompos-
able tensor a special PSD tensor. This result is also for the odd order case.
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7.11. Copositive Tensors and Quantum Field Theory

The following paper is published last year:

[5]. K. Kannike, “Vacuum stability of a general scalar potential of a few fields”,
European Physical Journal C 76 324 (2016).

Kristjan Kannike, a researcher at National Institute of Chemical Physics and
Biophysics, Estonia. In this paper, he wrote that

“A scalar potential has to be bounded from below to make physical sense. In the
Standard Model (SM), it simply means that the self-coupling of the Higgs boson
has to be positive. In an extended model with more scalar fields, the potential
has to be bounded from below - the vacuum has to be stable - in the limit of
large field values in all possible directions of the field space. In this limit, any
terms with dimensionful couplings - mass or cubic terms - can be neglected in
comparison with the quartic part of the scalar potential.”

Section 7 of [5] are on tensor eigenvalues and copositive tensors.

http://math.suda.edu.cn


Introduction

Eigenvalues and . . .

Nonnegative Tensors

Applications

PSD and SOS Tensors

Spectral Graph Theory

Applications in Physics

Home Page

Title Page

JJ II

J I

Page 130 of 132

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7.12. Prof. Epifanio Virga

In 2015, I noticed a paper:

[1] E.G. Virga “Octupolar order in two dimensions”, Eur. Phys. J. E 38 (2015)
63.

Prof. Epifanio Virga is a mathematical physics professor at Italy, whose research
is on liquid crystal. In [1], he applied tensor eigenvalues introduced by me to
this research. I invited Prof. Virga to give a talk at the tensor conference at
Nankai, May 2016. He has not been able to come. But later he sent me a new
paper.

[2] G. Gaeta and E.G. Virga, “Octupolar order in three dimensions”, Eur. Phys.
J. E 39 (2016) 113.
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7.13. Liquid Crystal

Liquid crystals are well-known for visualization applications in flat panel elec-
tronic displays. But beyond that, various optical and electronic devices, such
as laser printers, light-emitting diodes, field-effect transistors, and holographic
data storage, were invented with the development of bent-core (banana-shaped)
liquid crystals. A third-order three dimensional symmetric traceless tensor
was introduced in to characterize condensed phases exhibited by bent-core
molecules. Based on such a tensor, the orientationally ordered octupolar (tetra-
hedratic) phase has been both predicted theoretically and confirmed experimen-
tally. After that, the octupolar order parameters of liquid crystals have been
widely studied. Generalized liquid crystal phases were also considered, which
feature octupolar order tensors among so many others.

Virga [1] and Gaeta and Virga [2], in their studies of third-order octupolar ten-
sors in two and three space dimensions, respectively, also introduced the oc-
tupolar potential, a scalar-valued function on the unit sphere obtained from
the octupolar tensor. In particular, Gaeta and Virga [2] showed that the irre-
ducible admissible region for the octupolar potential is bounded by a surface in
the three-dimensional parameter space which has the form of a dome and, more
importantly, that there are indeed two generic octupolar states, divided by a sep-
aratrix surface in paramter space. Physically, the latter surface was interpreted
as representing a possible intra-octupolar transition.
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7.14. A Joint Work

However, Gaeta and Virga [2] have not been able to give explicit algebraic ex-
pressions of the dome and the separatrix surface. This problem attracted the
attention of Dr. Yannan Chen and me. Can we give explicit expressions of the
dome and the separatrix surface by our theory of tensor eigenvalues? If we can
do so, especially if we can give the explicit expression of the separatrix surface,
then such a possible intra-octupolar transition state may be detected experimen-
tally too. We worked with Epifanio Virga, and succeded. We wrote a joint
paper:

[3] Y. Chen, L. Qi, and E.G. Virga, “Octupolar tensors for liquid crystals”,
arXiv:1701.06761, 2017.

In this paper, by using the resultant theory of algebraic geometry and the E-
characteristic polynomial of the spectral theory of tensors, we give a closed-
form, algebraic expression for both the dome and the separatrix. This turns the
intra-octupolar transition envisioned in [2] into a quantitative, possibly observ-
able prediction.

http://math.suda.edu.cn
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