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1 Review

1.1 Notation

Ω is an open subset of Rn, usually open with Lipschitz boundary (a bounded Lipschitz set).
E b Ω denotes that E ⊂ Ω and E is compact (even if Ω is not bounded).

1.2 Sobolev Spaces

Let u be an L1
loc-function on Ω. Assume that there exists an L1

loc function v such that the
‘integration by parts’ formula∫

Ω

u ∂iφdx = −
∫

Ω

vφ ∀ φ ∈ C∞c (Ω)
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holds. Then we say that v is the weak (or distributional) derivative of u in ei-direction and write
v = ∂iu. Classical derivatives of smooth functions are weak derivatives and weak derivatives are
unique (up to null sets, of course). The Sobolev space W 1,p is the space of Lp-functions whose
weak derivatives exist and also lie in Lp. It is a Banach space with the norm

||u||W 1,p =

(
||u||pLp +

∑
i

||∂iu||pLp

) 1
p

Recall the following result.

Theorem 1.1 (Rellich-Kondrakhov). Let Ω be a bounded Lipschitz set. For p < n, W 1,p(Ω)
embeds continuously into Lq(Ω) with q ≤ p∗ := np

n−p and the embedding is compact for q < p∗,
i.e.

||u||Lq(Ω) ≤ Cn,p,q,Ω ||u||W 1,p(Ω) ∀ q ≤ p∗ and u ∈W 1,p(Ω)

and for q < p∗ any sequence uj which is bounded in W 1,p has a subsequence which converges to
some limit u in Lq(Ω) with respect to the Lq-norm. Note that p∗ > p for all n and that p∗ →∞
as p↗ n.

For p > n, W 1,p embeds continuously into the space of continuous functions, i.e. u ∈ C0(Ω)
and

||u||C0(Ω) ≤ Cn,p,Ω ||u||W 1,p

The embedding is also compact, i.e. if uj is a sequence which is bounded in W 1,p(Ω), then there
exists a continuous function u on Ω such that uj → u uniformly on Ω (i.e. with respect to the
C0-norm).

For further information, see e.g. [Bre11, Dob10].

1.3 Functional Analysis and the Calculus of Variations

Let X be a Banach space and X∗ its normed dual space (the vector space of all linear continuous
maps from X to R). Then we say that xj ⇀ x (in words: xn converges weakly to x) if φ(xn)→
φ(x) for all φ ∈ X∗. Note that strong convergence (i.e. convergence with respect to the norm)
implies weak convergence, but the converse is not true (except for finite dimensional and very
pathological infinite dimensional spaces).

Remark 1.2. If uj , u ∈ Lp(Ω), we have that

uj ⇀ u ⇔
∫

Ω

ujφ→
∫

Ω

uφ ∀φ ∈ C∞c (Ω).

Purely from the definition, there are more test functions since the dual space of Lp(Ω) is L
p
p−1 (Ω)

by the Riesz representation theorem. In particular, the function φ ≡ 1 is an admissible test
function if and only if Ω has finite measure.

If uj , u ∈W 1,p(Ω), we have that

uj ⇀ u ⇔ uj ⇀ u in Lp(Ω) and ∂iuj ⇀ ∂iu in Lp(Ω)

for all i = 1, . . . , n.

Theorem 1.3. Let 1 < p < ∞. Any sequence uk which is uniformly bounded in Lp(Ω) or
W 1,p(Ω) has a weakly convergent subsequence.
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This is a (weak) substitute of the Heine-Borel theorem in finite dimensional Banach spaces,
which says that bounded closed sets are compact. This is never true in infinite-dimensional
spaces, so we need to pass to weak topologies (more precisely, the weak* topology, but this
makes no difference in Lp-spaces, at least for p ∈ (1,∞)).

Definition 1.4. A functional F : X → R ∪ {+∞} is called convex, if F 6≡ +∞ and

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y)

for all x, y ∈ X and λ ∈ (0, 1).

Definition 1.5. A functional F : X → R ∪ {+∞} is called weakly (sequentially) lower semi-
continuous, if F 6≡ +∞ and

xk ⇀ x ⇒ F (x) ≤ lim inf
k→∞

F (xk).

Theorem 1.6. Convex functionals which are continuous with respect to the norm are weakly
lower semi-continuous.

Proof. A continuous convex function is the supremum of all continuous affine functions lying
below it pointwise. In formulae, we have

φ(x) = sup{Lx+ α | where L ∈ X∗ and α ∈ R such that Ly + α ≤ φ(y) for all y ∈ R}.

(Proofs of this fact usually use the Hahn-Banach theorem. A graphical justification in one
dimension is obvious.) Assume that xn ⇀ x, so

Lxn + α→ Lx+ α

for all L ∈ X∗ and α ∈ R since elements of the dual space are continuous in the weak topology
by the construction of the weak topology. Thus

φ(x) = sup
(L,α)∈M

(Lx+ α)

≤ L0x+ α0 + ε

= lim
n→∞

(L0xn + α0) + ε

≤ lim inf
n→∞

sup
(L,α)∈M

(Lxn + α) + ε

≤ lim inf
n→∞

φ(xn) + ε

when we choose L0, α0 close enough to the supremum (measured in ε). Letting ε→ 0 proves the
statement. The key point is that the parameter set

M = {L ∈ X∗ and α ∈ R such that Ly + α ≤ φ(y) for all y ∈ R}

does not depend on the points x, xn!

Example 1.7. The functional F : Lp(Ω)→ R given by F (u) =
∫

Ω
f(u) dx is lower semi-continuous

if and only if f is convex.
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Proof. If f is convex, then F is convex. Since f is convex on R, it is continuous, and thus F is
continuous (assuming some growth condition on f).

If f is not convex, we can construct a counterexample. For simplicity, take Ω = [0, 1] and
assume that W (s) = (s2 − 1)2 which has two zeros at +1 and −1 and is strictly positive in
between. Consider

uj(x) =


1 x ∈ [0, 2−j)

0 x ∈ [2−j , 2 ∗ 2−j)

1 x ∈ [2 ∗ 2−j , 3 ∗ 2−j)
...

...

where uj ⇀ u ≡ 0 (highly oscillating sequences weakly approach their mean). We have F (uj) ≡
0, but F (u) = W (0) > 0, so F is not lower semi-continuous. In general, we use the same idea of
using oscillations for convex combination.

A great source for everything related to standard functional analysis and weak topologies is
[Bre11].

1.4 The Modica-Mortola Functional

We assume from now on that Ω is bounded and has a Lipschitz boundary (think of the unit ball,
unit cube, the area bounded by a torus...). The Modica-Mortola functional is given by

Fε(u) =

{∫
Ω
ε
2 |∇u|

2 + 1
ε W (u) dx u ∈W 1,2(Ω) ∩ L4(Ω)

+∞ u ∈ L1(Ω) \
[
W 1,2(Ω) ∩ L4(Ω

]
for W (u) = (u2−1)2

4 . The functional is sometimes also referred to as the Ginzburg-Landau
functional or the Cahn-Hilliard energy. Its time-normalised L2-gradient flow is the Allen-Cahn
equation

ε ut = ε∆u− 1

ε
W ′(u)

and its H−1-gradient flow is the Cahn-Hillard equation

ε ut = −∆

(
ε∆u− 1

ε
W ′(u)

)
.

The latter one is integral preserving, so as t→∞, we expect to see minimisers of Fε in the class
of functions with fixed integral. Let us prove rigorously that those exist.

Theorem 1.8. For all α ∈ [−1, 1] there exists a minimiser of Fε in the set

Kα =

{
u ∈ L1(Ω) :

1

|Ω|

∫
Ω

udx = α

}
.

Proof. We prove the theorem with the direct method of the calculus of variations. Let uk ∈ L1(Ω)
be a sequence such that

lim
k→∞

Fε(uk) = inf
u∈Kα

Fε(u) <∞.

The bounded energies induce uniform bounds in W 1,2 and L4, since

W (u) =
u4

4
− u2

2
+

1

4
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controls the L4 norm, thus also the L2-norm (because Ω is bounded). Here we use that only
the highest order term of the polynomial matters for large arguments. So there is a subsequence
which converges weakly simultaneously in both spaces to the same limit u. We split

Fε(w) =

∫
Ω

ε

2
|∇w|2 +

w4

4ε
dx+

∫
Ω

−2w2 + 1

4ε
dx.

The first term is weakly lower semi-continuous because it is convex, the second is even weakly
continuous because of the compact embedding W 1,2 → L2. In total, Fε is weakly lower semi-
continuous because both terms are individually, and thus

Fε(u) ≤ lim inf
k→∞

Fε(uk) = inf
u∈Kα

Fε(u) <∞,

so u is a minimiser since also ∫
Ω

udx = α|Ω|

due to the compact embedding into L1.

Remark 1.9. The average condition is needed to make the problem non-trivial since otherwise
the minimiser is just given by u ≡ 1 or u ≡ −1. We could do the same without prescribing an
average but adding a forcing term to the functional and considering

F̃ε(u) = Fε(u)−
∫

Ω

f u dx

for some f ∈ L∞(Ω).

Minimisers uε of Fε are uniformly bounded in L4, so there exists a weak limit u. By con-
struction,

α |Ω| =
∫

Ω

uε =

∫
Ω

uε · 1→
∫

Ω

u · 1 =

∫
Ω

u

by weak convergence (using φ(x) ≡ 1 as a test function). Can we say anything more about u?
For deep results relating to this question and the convergence, see for example [CC06, LM89].
In the following we will lay the framework which these deeper results use.

2 Gamma-Convergence

We are interested in the limit of Fε as ε→ 0. Note that

lim
ε→0
Fε(u) =∞

for all u ∈ W 1,2(Ω) ∩ L4(Ω) which are not either u ≡ − or u ≡ 1 since the second term blows
up (if Ω is connected, componentwise constant else). Thus the pointwise limit does not tell us
anything about Fε and we need a different concept of limits. We will use a notion which is
particularly adapted to energy minimisation.

Definition 2.1. Let (X, d) be a metric space, Fε,F : X → R ∪ {+∞} functions, x ∈ X. Then
we say that Fε Γ-converges to F at x and write[

Γ− lim
ε→0
Fε
]

(x) = F(x)

if the following two conditions are met.
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1. For any sequence xε
d→ x, we have lim infε→0 Fε(xε) ≥ F(x). (lim inf-inequality)

2. There exists a sequence xε
d→ x such that lim supε→0 Fε(xε) ≤ F(x). (lim sup-inequality)

We say that Fε Γ-converges to F if it Γ-converges at every point. The sequence in the lim sup-
inequality is called a recovery sequence.

This is the right kind of convergence as explained in the following lemma. Note that the
sum of two Γ-convergent sequences need not be Γ-convergent! The lim inf-inequality is of course
preserved, but we might not be able to find a simultaneous recovery sequence for both converging
functionals, so that the lim sup-inequality might be violated.

Lemma 2.2. 1. If Γ− limε→0 Fε = F and xε → x0 is a sequence such that

lim
ε→0
Fε(xε) = lim

ε→0
inf
y∈X
Fε(y),

then F(x0) = infy∈X F(y). (“Minimisers converge to minimisers”)

2. If Γ− limε→0 Fε = F and Gε → G uniformly, G is continuous, then

Γ− lim
ε→0

(Fε + Gε) = F + G.

3. Let F = Γ− limε→0 Fε. Then F is lower semi-continuous.

Proof. Ad (1). By definition, F(x0) ≤ lim infε→0 Fε(xε) = lim infε→0 infx∈X Fε(x). On the
other hand, take a point x̄ such that F(x̄) ≤ infx∈X F(x) + δ. Then there exists a sequence
x̄ε → x such that

inf
x∈X
F(x) + δ ≥ F(x̄) ≥ lim sup

ε→0
Fε(x̄ε) ≥ lim inf

ε→0
inf
y∈X
Fε(y) ≥ F(x0).

Taking δ → 0 shows that x0 is a minimiser.
Ad (2). Let xε → x, then

lim inf
ε→0

(Fε + Gε)(xε) ≥ lim inf
ε→0

Fε(xε) + lim inf
ε→0

G(xε) + lim inf
ε→0

(Gε − G)(xε)

≥ F(x) + G(x)

using both continuity (actually, lower semi-continuity) and uniform convergence. Now let xε be
a recovery sequence for Fε, then

lim sup
ε→0

(Fε + Gε)(xε) = lim sup
ε→0

Fε(xε) + lim sup
ε→0

G(xε) + (Gε − G)(xε) ≥ (F + G)(x)

using both continuity (actually, upper semi-continuity) and uniform convergence.
Ad (3). Let xk → x. We want to show that

F(x) ≤ lim inf
k→∞

F(xk).

So take ε = εk so small and x̃k such that d(xk, x̃k) < 1/k and

Fεk(x̃k) ≤ F(xk) + 1/k.

Such εk and x̃k exist by the lim inf inequality. Since xk → x and d(xk, x̃k)→ 0, we have x̃k → x
and thus

F(x) ≤ lim inf
k→∞

Fεk(x̃k) ≤ lim inf
k→∞

F(xk)

by construction.
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Remark 2.3. Note that local minimisers do not generally converge to local minimisers! The
‘functionals’ (i.e. functions) fε on the real line (with the usual metric) given by fε(x) = x2 +
2ε sin(x2/ε) have a large number of local minimisers on the whole real line, but their Γ-limit x2

only has one minimiser at x = 0. Of course they converge under some uniformity condition on
the domain where the functions are minimisers.

Remark 2.4. Fixing 1
|Ω|
∫

Ω
udx = α is not a compact perturbation, but we adapt the space

X = Kα and everything goes through. Adding a force term
∫

Ω
fudx is a compact perturbation.

Remark 2.5. We have shown that if the minimisers of Γ-convergent functionals converge to a
point, then that point is a minimiser of the limit functional. For the existence of a convergent
subsequence we need a mild ‘equi-coercivity’ condition. Assume that there exists a compact set
K ⊂ X such that

inf
y∈K
Fε(y) = inf

y∈X
Fε(y) ∀ ε > 0,

then F has a minimiser since we can extract a convergent subsequence from an almost minimising
sequence xε for Fε that lies in the compact set K. If Fε is lower semi-continuous for all ε, the
functionals Fε have minimisers in X which lie in K and the sequence of minimisers converges to
a minimiser of F .

Example 2.6. 1. Uniform Convergence of continuous functionals ⇒ Γ-convergence.

2. Let us look at constant sequences where we just repeat one element of a function space
all the time (which is not a constant function). Observe that χQ → 0 in the sense of
Γ-convergence,

3. χR\Q
Γ→ 0, but

4. Γ− limε→0(χQ + χR\Q) ≡ 1.

5. Γ-convergence can for example be used to deduce 2D elasticity from 3D elasticity since we
don’t need pointwise constructions.

Further properties and examples of Γ-convergence can be found for example in [Bra02], where
also the example of Modica-Mortola in one dimension is treated in a similar way to our approach.

7



3 The Modica-Mortola Functional

3.1 The Modica-Mortola Functional in One Dimension

We first look at the convergence of the Modica-Mortola functional Fε in one dimension. Let
I = [0, 1] denote the unit interval. Note that∫ y

x

ε

2
|u′|2 +

1

ε
W (u) dξ ≥

∫ t

x

√
2W (u)u′ dξ

=

∫ u(y)

u(x)

√
2W (z) dz.

Lemma 3.1 (equi-coercivity). Assume that supε→0 Eε(uε) < ∞. Then there exists a piecewise
constant function u : I → {−1, 1} such that uε → u in L1(I).

Here we take a piece-wise constant function to be a function that u =
∑N
i=1 αi χIi where

αi ∈ R and χIi is the characteristic function of an interval Ii = [ai, bi). So the function takes
finitely many values and jumps a finite number of times. It is no restriction to assume that the
intervals Ii are disjoint. We write u ∈ PC(I) or U ∈ PC(I, {α1, . . . , αn}) if we want to specify
which values the function may take.

Proof of Lemma 3.1. Note that
∫
I
(u2
ε−1)2 dx ≤ ε·Fε(uε)→ 0, so u2

ε → 1 in L2(I). In particular,
we deduce that |uε| → 1 pointwise almost everywhere (for a subsequence). Now partition I into
N intervals Ij = [ j−1

N , jN ] of length 1
N , j = 1, . . . , N . Denote

uj,ε = max
x∈Ij

uε(x), uj,ε = min
x∈Ij

uε(x).

The maxima and minima exist because W 1,2-functions are continuous in one dimension (or using
the density of smooth functions and choosing all uε to be smooth). We note that the set of indexes
j where these differ significantly has uniformly bounded cardinality, namely set

Jδε,N =
{
j ∈ {1, . . . , N} : uj,ε − uj,ε ≥ δ

}
and

ω(δ) = min
ξ∈R

min
η≥ξ+δ

∫ η

ξ

√
2W (z) dz.

Then by our initial observation

#Jδε,N ≤
supε Fε(uε)

ω(δ)
,

thus we only jump by an amount of at least δ only in a uniformly bounded number of subintervals,
independently of N . We keep δ and N fixed and note that Jδε,N is a sequence (in ε) with values
in the (finite!) power set of {1, . . . , N}. Therefore there exists a state in the power set that is hit
infinitely often by Jδε,N . We pass to a subsequence in ε with this property so that Jδε,N ≡ JδN .

Let us fix δ = 1/2 and write JδN ≡ JN . We want to show that uε converges to some function
u ∈ PC(I) (the space of piecewise constant functions) in L1 on

LN := I \
⋃
j∈JN

Ij .

Fix η. For small enough ε we know that there exists x ∈ Ij such that

|uε(x)| ≥ 1− η
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due to the convergence pointwise almost everywhere. Since uε does not oscillate by more than
δ = 1/2 on the complement of the JN -intervals and since uε is uniformly bounded (because
ω(δ) → ∞ as δ → ∞), we obtain convergence pointwise almost everywhere on LN and L1-
convergence by the dominated convergence theorem. We can let N →∞ since #JδN is uniformly
bounded and obtain a piecewise constant function.

We had argued that we get a weak L4-limit of uε in any dimension. The strong L1-convergence
is a much stronger statement, and the precise characterisation of the limit is important in the
computation of the Γ-limit.

Theorem 3.2 (Γ-limit). We have

Γ(L1)− lim
ε→0
Fε(u) = F(u) = c0

{
#(jump set of u) if u ∈ PC(I, {−1, 1})
+∞ else

where c0 =
∫ 1

−1

√
2W (z) dz.

Proof. lim inf-inequality. The lim inf-inequality is only interesting if lim infε→0 Fε(uε) < ∞,
so we see that uε → u for a piecewise constant function with values ±1 and a finite number of
jumps from the previous Lemma. Take a jump point x and choose an interval (y, y) such that u
only jumps at x in (y, y).

Fix η > 0. For small enough ε, there exist y < y
ε
< yε < y such that

uε(yε) < −1 + η, uε(yε) > 1− η,

so ∫ y

y

ε

2
|u′|2 +

1

ε
W (u) dξ ≥

∫ yε

y
ε

√
2W (u) |u′|dξ

=

∫ 1−η

−1+η

√
2W (z) dz.

We add up the different jump intervals, let η → 0, and see that

lim inf
ε→0

Fε(uε) ≥ #(jump set) ·
∫ 1

−1

√
2W (z) dz.

lim sup-inequality. Let u be a piecewise constant function with values in {−1, 1} (and
finitely many jumps). For a recovery sequence, we just need a function uε such that

ε

2
(u′ε)

2 +
1

ε
W (uε) ≈

√
2W (uε) |u′ε|

with an error going to zero as ε → 0. An explicit solution of this is uε(x) = tanh
(

x√
2 ε

)
. In

general, this is constructed for ε = 1 and then appropriately rescaled as

uε(x) = u1(x/ε).

Equality holds in Young’s inequality if and only if both terms are equal, so we need to solve

(q′)2 = 2W (q) ⇒ q′ =
√

2W (q)

9



if we focus on monotone solutions. We can solve this on some maximal interval forwards and
backwards with q(0) = 0. If q(x) ≈ 1, the equation is

(1− q)′ = −q′ = −
√

2W (q)

≈ −
√

2W (1) + 2W ′(1) (q − 1) +W ′′(1) (q − 1)2 = −
√
W ′′(1) |q − 1|,

so q approaches the potential wells at ±1 exponentially fast. This gives us a recovery sequence
for one jump infinitely long jump since the transition happens only in infinite space. But since
the function goes to ±1 exponentially fast at ±∞ and the derivative does the same (by the
ODE), we can (for small enough ε) piece several functions like this together around the different
jumps.

Remark 3.3. Note that uniform convergence does not hold, even away from the jump points, but
that staying away from ±1 at any point costs a certain amount of energy. Thus the δ-distant set

Aδ :=
{
x ∈ I \ (jump set of u) : ∃ xε → x, lim sup

ε→0
|uε(xε)− u(x)| ≥ δ

}
is finite for all δ > 0. We call this morally uniform convergence. Every recovery sequence on the
other hand converges uniformly, since all energy is already in the jumps.

Big question: How do we generalise this to higher dimension?

3.2 Counting jumps - some heuristic motivation

Let u ∈ PC(I, {a1, . . . , aN}) be a piecewise constant function. If we take a smooth approximation
uη of u which is monotone around jumps, we get the amount of almost jumps as

total jump height ≈
∫ 1

0

|u′η|dx = sup

{∫ 1

0

u′η φ dx

∣∣∣∣ φ ∈ C∞c (I), |φ| ≤ 1

}
where φ picks the sign ±1 depending on whether we jump up or down. Since φ is smooth by
definition and vanishes at ±1, we get∫ 1

0

u′η φdx = −
∫ 1

0

uη φ
′ dx

when we integrate by parts, so∫ 1

0

|u′η|dx = sup

{∫ 1

0

uη φ
′ dx

∣∣∣∣ φ ∈ C∞c (I), |φ| ≤ 1

}
.

But here we can pass to the limit in η! So we now formally set∫ 1

0

|u′|dx = sup

{∫ 1

0

uφ′ dx

∣∣∣∣ φ ∈ C∞c (I), |φ| ≤ 1

}
.

also for piecewise constant functions. This generalises to higher dimension.
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3.3 Functions of Bounded Variation

Definition 3.4. Let u ∈ L1(Ω). We define the total variation of u in Ω by

TV (u,Ω) := sup

{∫
Ω

udiv(φ) dx

∣∣∣∣ φ ∈ C∞c (Ω,Rn), |φ| ≤ 1

}
.

Similarly as in one dimension, we can identify TV (u,Ω) =
∫

Ω
|∇u|dx by a partial integration,

where this time φ should not just be ±1, but also point in the same direction on Sn−1 as the
gradient of u in the smooth case.

Definition 3.5. The space of functions of bounded variation is defined as

BV (Ω) =
{
u ∈ L1(Ω) | TV (u,Ω) <∞

}
and equipped with the norm

||u||BV (Ω) = ||u||L1(Ω) + TV (u,Ω).

Lemma 3.6. [EG92, Section 5.2]

1. BV (Ω) is a Banach space.

2. If u ∈W 1,1(Ω), then TV (u,Ω) =
∫

Ω
|∇u|dx.

3. The smooth functions are weakly dense in BV (Ω): Let ηε be a mollifier and uε = u ∗ ηε ∈
L1(Ω′) for Ω′ b Ω. Then

uε
L1(Ω′)−→ u,

∫
Ω′
|∇uε|dx ≤ TV (u,Ω).

4. BV (Ω) embeds continuously into L
n
n−1 (Ω), i.e.

||u||Lp ≤ Cn,p,Ω ||u||BV ∀ u ∈ BV (Ω), p ≤ n

n− 1
.

5. BV (Ω) embeds compactly and with closed image into Lp(Ω) for p < n
n−1 , i.e. if uk is a

bounded sequence in BV (Ω), then there exists a function u ∈ BV (Ω) with

||u||BV ≤ lim inf
k→∞

||uk||BV

such that uk → u with respect to the Lp-norm for all p < n
n−1 .

Proof. Ad (1). Let uk be a Cauchy-sequence in BV (Ω). Then uk is a Cauchy sequence in
L1(Ω), so there exists u ∈ L1(Ω) such that uk → u in L1. Furthermore∫

Ω

udiv(φ) = lim
k→∞

∫
Ω

uk div(φ) dx ≤ lim sup
k→∞

TV (uk,Ω),

for φ ∈ C∞c (Ω,Rn) with |φ| ≤ 1, thus when we take the supremum over such φ (without effect
on the right hand side), we find

TV (u,Ω) ≤ lim inf
k→∞

TV (uk,Ω).

11



Furthermore

TV (u− uk,Ω) = sup

{∫
Ω

(u− uk) div(φ) dx

∣∣∣∣ φ}
= sup lim

m→∞

{∫
Ω

(um − uk) div(φ) dx

∣∣∣∣ φ}
≤ lim sup

m→∞
sup

{∫
Ω

(um − uk) div(φ) dx

∣∣∣∣ φ}
= lim sup

m→∞
TV (um − uk,Ω)

→ 0

as k → 0, so uk converges to u in BV .
Ad (2). Direct calculation.
Ad(3). Direct calculation.
Ad (4). On Ω′ b Ω, we replace u by uε as in the previous point. For uε, the statement is

known from the theory of Sobolev spaces. We can then let Ω′ ↗ Ω. (The last point is a bit more
subtle – we actually have to work with extension domains, but its clear on convex domains where
we can choose Ω′ = λΩ for λ < 1 so that the embedding constants don’t degenerate. C2-domains
are also ok, but very general domains may pose problems.)

Ad (5). Like point (4), this follows from the same property in W 1,1 by approximation with
smooth functions.

Example 3.7. 1. u ∈ C∞c (Ω)⇒ u ∈ BV (Ω).

2. u = χE for E b Ω and ∂E ∈ C1. Then TV (u,Ω) = |∂E| by the Gauss theorem and hence
u ∈ BV (Ω).

Remark 3.8. BV is neither uniformly convex nor separable. This means that a Galerkin method
cannot work in BV , since there is no good approximation by finite-dimensional spaces. W 1,1

is isometrically embedded in BV and agrees with the closure of C∞ ∩ BV with respect to the
BV -norm.

Definition 3.9. Let E ⊂ Ω be measurable. We say that E has finite perimeter in Ω if χE ∈
BV (Ω) and write

Per(E,Ω) = TV (χE ,Ω).

Corollary 3.10. Let Ek be a sequence of open sets, Ek b Ω with C1-boundaries ∂Ek such that

lim sup
k→∞

[|Ek|+ |∂Ek|] <∞.

Then there exists a set of finite perimeter E and a subsequence kj such that E = limj→∞Ekj in
the sense that

lim
j→∞

χEkj = χE in L1(Ω) and Per(Ekj )→ Per(E).

The converse is also true.

Theorem 3.11. Let E be a set of bounded perimeter. Then there exists a sequence of sets Ek
such that ∂Ek ∈ C∞ and

Ek
L1

→ E, Per(Ek)→ Per(E).

12



Idea of proof. Assume for simplicity that E b Ω. Consider the mollification uε = χE ∗ ηε for
some small ε > 0. Then uε ∈ C∞c (Ω) takes values in [0, 1]. By Sard’s theorem and the regular
value theorem, we can take λε ∈ (0, 1) such that ∂{uε > λε} is a C∞-manifold – in fact, for fixed
ε we can take almost every λ ∈ (0, 1). It is quite easy to show that

χEλε → χE

in L1(Ω) as ε→ 0, and we can extract a suitable subsequence. Furthermore, not all sets can have
too large perimeter, because the total variation of uε is bounded by the total variation of χE
and since the gradient of uε can be recovered from the perimeters of the sets {uε > λ} (coarea
formula).

This property is sometimes denoted as intermediate density of smooth sets, since the conver-
gence is weaker than norm convergence, but stronger than weak convergence.

Since BV -functions are only defined Lebesgue-almost everywhere, a set of finite perimeter
is only defined in a weak sense, so one needs more analytic machinery to make sense of their
boundary. In fact, a BV -function u has a weak gradient Du which is no longer a function, but
a measure, and their (reduced) boundary ∂∗E can be defined using the gradient measure DχE .
This boundary has many nice properties which resemble those of C1-boundaries. In particular
the perimeter of E is the n − 1-dimensional Hausdorff measure of ∂∗E – for this and more, see
[EG92, Giu84].

3.4 The Modica-Mortola Functional in Higher Dimensions

Theorem 3.12.

Γ(L1)− lim
ε→0
Fε(u) =

{
c0TV (u,Ω) u ∈ BV (Ω, {−1, 1})
+∞ else.

where c0 = 1
2

∫ 1

−1

√
2W (z) dz.

Our proof follows the original article [Mod87]; a different proof using a method called ‘slicing’
which reduces the n-dimensional case to the one-dimensional case, can be found in [Bra02]. The
method is applicable in more situations, but also requires deeper knowledge of the properties of
functions of finite perimeter and some additional measure theory, which is why we skip it here.

3.5 lim sup-construction

Assume that E b Ω such that Per(E,Ω) = Per(E,Rn) = Per(E). We imagine the phase-field
uε as an approximation of the characteristic function of a set E which makes a smoothed out
transition on a length-scale ε at the boundary ∂E. Let us for the moment assume that ∂E ∈ C2.
Then we approximate the signed distance function

sdist(x, ∂E) =

{
dist(x, ∂E) x ∈ E
−dist(x, ∂E) x /∈ E

by a function r such that

1. there exists a neighbourhood Uδ = {dist(x, ∂E) < δ} of ∂E such that r(x) = sdist(x, ∂E)
for all x ∈ U ,

2. r ≥ δ outside Uδ,

13



3. r ∈ C2(Rn) and

4. |∇r| ≤ 1.

Since ∂E ∈ C2, sdist is C2-smooth in a neighbourhood of ∂E and satisfies

∇sdist(x) = ν∂E,π(x), in particular |∇sdist| ≡ 1

on Uδ, where the closest point projection π : Uδ → ∂E is C2-smooth and uniquely defined (for
small δ > 0). We then set

uε(x) := q

(
r(x)

ε

)
where q : R→ R is the same function as in one dimension (the hyperbolic tangent). Now, using
the co-area formula [EG92, Section 3.4], we see that∫

Ω

ε

2
|∇uε|2 +

1

ε
W (uε) dx− C ε−2 exp(−δ/ε) ≤

∫
Uδ

ε

2
|∇uε|2 +

1

ε
W (uε) dx

=

∫
Uδ

ε

2
(q′)2

(
sdist

ε

) ∣∣∣∣∇sdist

ε

∣∣∣∣2 +
1

ε
W

(
q

(
sdist

ε

))
dx

=

∫
Uδ

1

2ε
(q′)2

(
sdist

ε

)
+

1

ε
W

(
q

(
sdist

ε

))
dx

=

∫
Uδ

1

ε

√
2W

(
q

(
sdist

ε

))
q′
(

sdist

ε

)
· 1 dx

=

∫
Uδ

1

ε

√
2W

(
q

(
sdist

ε

))
q′
(

sdist

ε

)
· |∇sdist|dx

=

∫ δ

−δ

(∫
{sdist=z}

1

ε

√
2W

(
q

(
sdist

ε

))
q′
(

sdist

ε

)
dHn−1

)
dz

=

∫ δ

−δ

1

ε

√
2W

(z
ε

)
q′
(z
ε

)
Hn−1 ({sdist = z}) dz

=

∫ δ/ε

−δ/ε

√
2W (q) q′

(
Hn−1(∂E) + o(1)

)
dz

→ c0H
n−1(∂E)

= c0Per(E).

If E touches the boundary, we have the same construction on Ω′ b Ω, but as we let Ω′ ↗ Ω, we
miss the part of the boundary of E which lies on ∂Ω, so we get the perimeter relative to Ω. Finally,
if E is not smooth, we can use the approximability of E by smooth sets Ek, approximate−1+2χEk
by suitable phase-fields uε,k and extract a diagonal sequence uεk,k approaching −1 + 2χE .

3.6 Compactness

Let us first prove the compactness result. Take any sequence uε ∈W 1,2(Ω) ∩ L4(Ω) such that

lim sup
ε→0

Fε(uε) <∞.
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Then by Young’s inequality with ε/completion of squares

Fε(uε) =

∫
Ω

ε

2
|∇uε|2 +

1

ε
W (uε) dx

≥
∫

Ω

√
2W (uε) |∇uε|dx. (3.1)

Thus when we take G to be any primitive function of
√

2W , we see that the sequence wε := G(uε)
satisfies

lim sup
ε→0

∫
Ω

|∇wε|dx <∞.

Furthermore G(uε) ∼ 1
6 |uε|

3 clearly remains bounded in L1(Ω), so overall in BV (Ω). Using the
BV -compactness theorem and the compact embedding into Lp(Ω) for 1 ≤ p < n/(n − 1), we
deduce that there exists w ∈ BV (Ω) such that (up to a subsequence) wε → w strongly in Lp(Ω)
for all p < n/(n− 1) with

TV (w,Ω) ≤ lim inf
ε→0

∫
Ω

|∇wε|dx ≤ lim inf
ε→0

Fε(uε). (3.2)

SinceG(uε)→ w in L1(Ω), a subsequence converges pointwise almost everywhere. AsG is strictly
monotone increasing, we can take its inverse function and obtain that uε → G−1(w) pointwise
almost everywhere. Using W (s) ≥ s4 for all sufficiently large |s|, the bound on

∫
Ω
W (uε) dx im-

plies that uε is bounded in L4(Ω). By a standard result on concentrations and weak compactness
(see e.g. [Bre11, Exercise 4.16]) we have that (1) uε → G−1(w) pointwise and (2) uε is bounded
in L4(Ω) together imply that uε → u = G−1(w) strongly in Lp(Ω) for all 1 ≤ p < 4.

3.7 lim inf-inequality

If uε → u strongly in L1(Ω) and lim supε→0 Fε(uε) <∞, then w = G(u) almost everywhere, since
L1-convergence implies convergence pointwise almost everywhere for a subsequence. Clearly u
only takes the values ±1 and w only the values G(−1), G(+1), thus

u = −1 + 2χE , w = G(−1) + (G(1)−G(−1)) · χE = G(−1) + c0 χE

one can easily relate their total variations by

c0 Per({u = 1}) =
c0
2
TV (u,Ω) = TV (w,Ω) ≤ lim inf

ε→0
Fε(uε)

due to (3.2), using that the total variation of a constant function vanishes and that the total
variation is positively homogeneous of degree one. This concludes the proof of the lim inf-
inequality.

4 Concluding Remarks

4.1 Convergence of the forced Allen-Cahn Equation

Consider the equation ε ∂tuε = ε∆uε − 1
ε W

′(uε) + gε in ΩT = (0, T )× Ω
uε(0, ·) = u0

ε in Ω
∇uε · νΩ = 0 on (0, T )× ∂Ω.
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The term gε is an additional forcing term, while gε ≡ 0 corresponds to the L2-gradient flow of
Fε. The ε in front of the time derivative comes in for time normalisation purposes. If we make
the recovery sequence ansatz

uε(x) = q

(
sdist(x, ∂E)

ε

)
,

then (abbreviating r = sdist) we get

ε∆uε −
1

ε
W ′(uε) = q′

(r
ε

)
∆r +

1

ε
q′′
(r
ε

)
|∇r|2 − 1

ε
W ′
(r
ε

)
= q′

(r
ε

)
∆r =

√
2W (uε) ∆r

since the other two terms cancel out along the optimal profile transition. The Laplacian of the
signed distance function from a boundary is exactly the mean curvature evaluated at the closest
point projection (see e.g. [GT83, Section 14.6]), so on the zero level set, the right hand side of
the Allen-Cahn equation is exactly the mean curvature of the level set in this ansatz. We now
need the time re-normalisation since the interface moves with speed O(1) if the time derivative
of order is O(1/ε) because the transition is so steep.

As the Modica-Mortola functional approaches the perimeter, it makes sense to conjecture that
the Allen-Cahn equation (somehow) approaches mean curvature flow, which is the L2-gradient
flow of the area functional (i.e. the perimeter on the space of boundaries), and that a perturbation
might give rise to a forced mean curvature flow, i.e. a flow with normal velocity H + g where g
is a suitable limit of the gε. As long as everything is smooth, we can make the calculation above
rigorous also in the parabolic case.

There are too many introductions to mean curvature flow to list them here, but see for example
[Eck04] and the sources given in the introduction. For the interpretation of mean curvature as
the L2-gradient of the area functional (and thus of mean curvature flow as its L2-gradient flow)
see e.g. [Sim83].

There are several ways to make this rigorous. Since mean curvature flow develops singularities
in finite time, we need weak concepts of solutions.

In [ESS92], the authors construct sub- and super-solutions to show convergence to level set
mean curvature flow (see the excellent and easily readable article [ES91]) under the assumption
that the zero-level set of the initial condition is non-fattening under level-set mean curvature
flow. This approach uses the parabolicity of mean curvature flow and the maximum principle.

Ilmanen shows convergence to mean curvature flow [Ilm93] in the sense of Brakke [Bra78],
where surfaces are interpreted as measures. Initial conditions have to be chosen in a suitable
way and the proofs mimic those of the theory of mean curvature flow with slight additional
complications when controlling the discrepancy measures which measure how far a phase-field is
from making the physically sensible optimal profile transitions which we like to see.

An interesting approach which also applies to forced mean curvature flow is due to Mugnai
and Röger [MR11, MR08]. The solution concept is again a (forced) version of Brakke flow. The
methods have a Γ-convergence-y flavour, since the authors start by considering the Allen-Cahn
action functional

Sε(u) =

∫ T

0

∫
Ω

(√
ε∂tu+

1√
ε

(
−ε∆u+

1

ε
W ′(u)

))2

dx.

Note that solutions to the Allen-Cahn equation have zero action functional energy, but that we
can also consider the forced Allen-Cahn equation with gε such that

sup
ε>0

∫ T

0

∫
Ω

1

ε
g2
ε dxdt =: Λ <∞.
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We look at the weak mean curvature/Allen-Cahn right hand side wε := −ε∆uε − 1
ε W

′(uε) and
note that there is a (fairly technical) Γ-limit for the functional

Wε(u) =
1

c0ε

∫
Ω

w2
ε dx,

at least in n = 2, 3 dimensions. Namely[
Γ(L1)− lim

ε→0
Wε

]
(−1 + 2χE) =

∫
∂E

|H|2 dH2

if E is a set with C2-boundary [RS06], i.e. we approach the integral of the mean curvature squared
of the boundary, also known as Willmore’s energy [KS12]. If the diffuse Willmore energy remains
uniformly bounded along a sequence of phase-fields uε, then uε has to be relatively regular, and
we see that the weak* limit µ of the Radon measures

µε =
1

c0

(
ε

2
|∇uε|2 +

1

ε
W (uε)

)
· Ln

has to be an integral varifold. (A Radon measure is a ‘nice’ measure or equivalently, an object
of the dual space of continuous functions with a similar duality as the one between L1 and L∞,
see [EG92]. An integral varifold is a ‘nice’ Radon measure which resembles a surface of given
dimension k, see the recent introductory article [Men17] and the sources cited there, in particular
[Sim83].) In particular, µ is a measure such that

lim
ρ↘0

µ(Bρ(x))

ωn−1 ρn−1
∈ N0

for µ-almost all x ∈ spt(µ). Here ωn is the volume of the n-dimensional unit ball and

spt(µ) = {x ∈ Rn | µ(Br(x)) > 0 ∀ r > 0}

is the support of the measure µ. In this sense, measure limits µ of phase-fields uε are integer-
valued surfaces if Willmore’s energy is bounded along the sequence, and for almost all times if the
action functional is bounded. Thus the space where we get convergence to the forced Allen-Cahn
equation is a space of (measure-theoretically generalised) surfaces with integer multiplicities.

Note that the measures µ carry more information about the behaviour of the phase-fields uε
as ε → 0 than the function limit u. While we only know that u = ± almost everywhere, the
measures capture ‘ghost interfaces’ which we see on the phase field level, but cannot see in the
function limit. In the picture, both functions have the same limit, but the one on the left has a
ghost interface which disappears in the function limit, but not the measure limit!

−1

1

O(ε) O(
√
ε) O(ε)
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4.2 Higher- and Lower-order Phase-Field Energies

A higher order energy. As stated above, the higher order phase-field energy

Eε(u) := Fε(u) +Wε(u)

converges to a sum of the perimeter functional and Willmore’s energy, at least at smooth limit
points and in dimensions n ∈ {2, 3}. The hardest part is to show that the limits of measures
µε is ‘nice’ (i.e. an integral varifold). As for the Modica-Mortola functional in one dimension,
uniform bounds on Eε imply morally uniform convergence [DW17].

A lower order energy. On a periodic interval, we can write

[u]2H1 =

∫
|u′|2 dx =

∑
k∈Z
|k|2 |û(k)|2

where û(k) is the k-th Fourier coefficient of u. We can generalise this to

[u]2Hs =
∑
k∈Z
|k|2s |û(k)|2

for s ∈ (0, 1) and call this the Hs-semi norm. The generalised Modica-Mortola functionals

Fsε (u) = cs,ε[u]2Hs +

∫
Ω

1

ε
W (u) dx

have different Γ-limits depending on s. For s > 1/2, we choose cε ∼ ε2s−1 and recover the
perimeter. The same is true for s = 1/2 and cε ∼ 1

| log ε| , while for s < 1/2, we can choose

cε ≡ 1 and obtain a non-local perimeter. Also this generalises to many dimensions [SV12], but
one has to use Sobolev spaces of fractional order [NPV12]. These can be defined either using
Fourier-transforms as above, or as functions for which a suitable singular integral measuring the
jumps in some sense remains finite.
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[EG92] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies
in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

[ES91] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I. J. Differential
Geom., 33(3):635–681, 1991.

[ESS92] L. C. Evans, H. M. Soner, and P. E. Souganidis. Phase transitions and general-
ized motion by mean curvature. Communications on Pure and Applied Mathematics,
45(9):1097–1123, 1992.

[Giu84] E. Giusti. Minimal surfaces and functions of bounded variation, volume 80 of Mono-
graphs in Mathematics. Birkhäuser Verlag, Basel, 1984.
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